Properties

Label 92400.cv4
Conductor 92400
Discriminant 103488000000
j-invariant \( \frac{4354703137}{1617} \)
CM no
Rank 2
Torsion Structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([0, -1, 0, -13608, -606288]); // or
 
magma: E := EllipticCurve("92400ev1");
 
sage: E = EllipticCurve([0, -1, 0, -13608, -606288]) # or
 
sage: E = EllipticCurve("92400ev1")
 
gp: E = ellinit([0, -1, 0, -13608, -606288]) \\ or
 
gp: E = ellinit("92400ev1")
 

\( y^2 = x^{3} - x^{2} - 13608 x - 606288 \)

Mordell-Weil group structure

\(\Z^2 \times \Z/{2}\Z\)

Infinite order Mordell-Weil generators and heights

magma: Generators(E);
 
sage: E.gens()
 

\(P\) =  \( \left(-67, 14\right) \)\( \left(157, 1050\right) \)
\(\hat{h}(P)\) ≈  2.020306936622.8293094897

Torsion generators

magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 

\( \left(-68, 0\right) \)

Integral points

magma: IntegralPoints(E);
 
sage: E.integral_points()
 

\( \left(-68, 0\right) \), \((-67,\pm 14)\), \((157,\pm 1050)\), \((188,\pm 1856)\), \((332,\pm 5600)\), \((956,\pm 29312)\)

Invariants

magma: Conductor(E);
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
Conductor: \( 92400 \)  =  \(2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11\)
magma: Discriminant(E);
 
sage: E.discriminant().factor()
 
gp: E.disc
 
Discriminant: \(103488000000 \)  =  \(2^{12} \cdot 3 \cdot 5^{6} \cdot 7^{2} \cdot 11 \)
magma: jInvariant(E);
 
sage: E.j_invariant().factor()
 
gp: E.j
 
j-invariant: \( \frac{4354703137}{1617} \)  =  \(3^{-1} \cdot 7^{-2} \cdot 11^{-1} \cdot 23^{3} \cdot 71^{3}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

magma: Rank(E);
 
sage: E.rank()
 
Rank: \(2\)
magma: Regulator(E);
 
sage: E.regulator()
 
Regulator: \(5.59545728401\)
magma: RealPeriod(E);
 
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
Real period: \(0.442036364152\)
magma: TamagawaNumbers(E);
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Tamagawa product: \( 16 \)  = \( 2^{2}\cdot1\cdot2\cdot2\cdot1 \)
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
Torsion order: \(2\)
magma: MordellWeilShaInformation(E);
 
sage: E.sha().an_numerical()
 
Analytic order of Ш: \(1\) (rounded)

Modular invariants

Modular form 92400.2.a.cv

magma: ModularForm(E);
 
sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 

\( q - q^{3} + q^{7} + q^{9} + q^{11} - 6q^{13} - 2q^{17} - 4q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

magma: ModularDegree(E);
 
sage: E.modular_degree()
 
Modular degree: 163840
\( \Gamma_0(N) \)-optimal: yes
Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 

\( L^{(2)}(E,1)/2! \) ≈ \( 9.89358237437 \)

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(4\) \( I_4^{*} \) Additive -1 4 12 0
\(3\) \(1\) \( I_{1} \) Non-split multiplicative 1 1 1 1
\(5\) \(2\) \( I_0^{*} \) Additive 1 2 6 0
\(7\) \(2\) \( I_{2} \) Split multiplicative -1 1 2 2
\(11\) \(1\) \( I_{1} \) Split multiplicative -1 1 1 1

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X36.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right)$ and has index 12.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 
sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

Note: \(p\)-adic regulator data only exists for primes \(p\ge5\) of good ordinary reduction.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add nonsplit add split split ordinary ordinary ordinary ss ordinary ordinary ordinary ordinary ordinary ordinary
$\lambda$-invariant(s) - 2 - 5 3 2 2 2 2,2 2 2 2 2 2 2
$\mu$-invariant(s) - 0 - 0 0 0 0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 92400.cv consists of 6 curves linked by isogenies of degrees dividing 8.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 \(\Q(\sqrt{-5}) \) \(\Z/4\Z\) Not in database
\(\Q(\sqrt{33}) \) \(\Z/2\Z \times \Z/2\Z\) Not in database
\(\Q(\sqrt{-165}) \) \(\Z/4\Z\) Not in database
4 \(\Q(\sqrt{-5}, \sqrt{77})\) \(\Z/8\Z\) Not in database
\(\Q(\sqrt{-5}, \sqrt{33})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
\(\Q(\sqrt{-5}, \sqrt{21})\) \(\Z/8\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.