sage:E = EllipticCurve("h1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 9200h1 has
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
5 | 1 |
23 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+2T+3T2 |
1.3.c
|
7 |
1+T+7T2 |
1.7.b
|
11 |
1−3T+11T2 |
1.11.ad
|
13 |
1+5T+13T2 |
1.13.f
|
17 |
1+6T+17T2 |
1.17.g
|
19 |
1−7T+19T2 |
1.19.ah
|
29 |
1−3T+29T2 |
1.29.ad
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 9200h do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 9200h
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
9200.o1 |
9200h1 |
[0,−1,0,−8,−113] |
−256/23 |
−5750000 |
[] |
1280 |
−0.023342
|
Γ0(N)-optimal |