⌂
→
Elliptic curves
→
$\Q$
→
920
Citation
·
Feedback
·
Hide Menu
Elliptic curves over $\Q$ of conductor 920
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Elliptic curve labels
Congruent number curves
Refine search
Advanced search options
Conductor
prime
p-power
sq-free
divides
Discriminant
j-invariant
Rank
Bad$\ p$
include
exclude
exactly
subset
Curves per isogeny class
Complex multiplication
Torsion
all
one
no potential CM
potential CM
CM field Q(sqrt(-1))
CM field Q(sqrt(-3))
CM field Q(sqrt(-7))
CM discriminant -3
CM discriminant -4
CM discriminant -7
CM discriminant -8
CM discriminant -11
CM discriminant -12
CM discriminant -16
CM discriminant -19
CM discriminant -27
CM discriminant -28
CM discriminant -43
CM discriminant -67
CM discriminant -163
trivial
order 4
order 8
order 12
ℤ/2ℤ
ℤ/3ℤ
ℤ/4ℤ
ℤ/5ℤ
ℤ/6ℤ
ℤ/7ℤ
ℤ/8ℤ
ℤ/9ℤ
ℤ/10ℤ
ℤ/12ℤ
ℤ/2ℤ⊕ℤ/2ℤ
ℤ/2ℤ⊕ℤ/4ℤ
ℤ/2ℤ⊕ℤ/6ℤ
ℤ/2ℤ⊕ℤ/8ℤ
Isogeny class degree
Cyclic isogeny degree
Isogeny class size
Integral points
Analytic order of Ш
$p\ $div$\ $|Ш|
include
exclude
exactly
subset
Regulator
Reduction
Faltings height
semistable
not semistable
potentially good
not potentially good
Galois image
Adelic level
Adelic index
Adelic genus
Nonmax$\ \ell$
include
exclude
exactly
subset
$abc$ quality
Szpiro ratio
Sort order
Select
Search again
Random curve
▲ conductor
rank
torsion
CM discriminant
regulator
analytic Ш
isogeny class size
isogeny class degree
integral points
modular degree
adelic level
adelic index
adelic genus
Faltings height
$abc$ quality
Szpiro ratio
columns to display
✓ LMFDB curve label
Cremona curve label
✓ LMFDB class label
Cremona class label
class size
class degree
✓ conductor
discriminant
✓ rank
✓ torsion
Qbar-end algebra
✓ CM discriminant
Sato-Tate group
semistable
potentially good
nonmaximal primes
ℓ-adic images
mod-ℓ images
adelic level
adelic index
adelic genus
regulator
analytic Ш
ш primes
integral points
modular degree
Faltings height
j-invariant
abc quality
szpiro ratio
Weierstrass coeffs
✓ Weierstrass equation
mod-m images
mw-generators
show all
Results (4 matches)
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
Label
Cremona label
Class
Cremona class
Class size
Class degree
Conductor
Discriminant
Rank
Torsion
$\textrm{End}^0(E_{\overline\Q})$
CM
Sato-Tate
Semistable
Potentially good
Nonmax $\ell$
$\ell$-adic images
mod-$\ell$ images
Adelic level
Adelic index
Adelic genus
Regulator
$Ш_{\textrm{an}}$
Ш primes
Integral points
Modular degree
Faltings height
j-invariant
$abc$ quality
Szpiro ratio
Weierstrass coefficients
Weierstrass equation
mod-$m$ images
MW-generators
920.a1
920b1
920.a
920b
$1$
$1$
\( 2^{3} \cdot 5 \cdot 23 \)
\( - 2^{4} \cdot 5^{6} \cdot 23 \)
$1$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
$46$
$2$
$0$
$0.055842642$
$1$
$10$
$288$
$0.125268$
$-45198971136/359375$
$0.91572$
$4.00338$
$[0, 0, 0, -187, 991]$
\(y^2=x^3-187x+991\)
46.2.0.a.1
$[(7, 5)]$
920.b1
920d1
920.b
920d
$1$
$1$
\( 2^{3} \cdot 5 \cdot 23 \)
\( - 2^{4} \cdot 5^{4} \cdot 23 \)
$1$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
$46$
$2$
$0$
$0.187156914$
$1$
$6$
$64$
$-0.292289$
$-256/14375$
$0.99213$
$2.90145$
$[0, -1, 0, 0, -23]$
\(y^2=x^3-x^2-23\)
46.2.0.a.1
$[(4, 5)]$
920.c1
920a1
920.c
920a
$1$
$1$
\( 2^{3} \cdot 5 \cdot 23 \)
\( - 2^{8} \cdot 5^{3} \cdot 23^{5} \)
$1$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
$230$
$2$
$0$
$0.068444770$
$1$
$10$
$720$
$0.860292$
$1366664500224/804542875$
$1.21975$
$4.90720$
$[0, 0, 0, 1468, -2844]$
\(y^2=x^3+1468x-2844\)
230.2.0.?
$[(302, 5290)]$
920.d1
920c1
920.d
920c
$1$
$1$
\( 2^{3} \cdot 5 \cdot 23 \)
\( - 2^{4} \cdot 5^{2} \cdot 23 \)
$1$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
$46$
$2$
$0$
$0.222897833$
$1$
$4$
$32$
$-0.554423$
$340736/575$
$0.71221$
$2.36823$
$[0, 1, 0, 4, 5]$
\(y^2=x^3+x^2+4x+5\)
46.2.0.a.1
$[(2, 5)]$
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV