Learn more

Refine search


Results (28 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
912.a1 912.a \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\mathsf{trivial}$ $1.134807958$ $[0, -1, 0, -57, -171]$ \(y^2=x^3-x^2-57x-171\)
912.b1 912.b \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $2.601893913$ $[0, -1, 0, -1624, -24656]$ \(y^2=x^3-x^2-1624x-24656\)
912.b2 912.b \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.300946956$ $[0, -1, 0, -104, -336]$ \(y^2=x^3-x^2-104x-336\)
912.b3 912.b \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $0.650473478$ $[0, -1, 0, -24, 48]$ \(y^2=x^3-x^2-24x+48\)
912.b4 912.b \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\Z/4\Z$ $2.601893913$ $[0, -1, 0, 136, -1872]$ \(y^2=x^3-x^2+136x-1872\)
912.c1 912.c \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -6848, 220416]$ \(y^2=x^3-x^2-6848x+220416\)
912.c2 912.c \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -6688, 231040]$ \(y^2=x^3-x^2-6688x+231040\)
912.c3 912.c \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -128, 0]$ \(y^2=x^3-x^2-128x\)
912.c4 912.c \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 512, -512]$ \(y^2=x^3-x^2+512x-512\)
912.d1 912.d \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\mathsf{trivial}$ $0.226284916$ $[0, -1, 0, -70245, 7189389]$ \(y^2=x^3-x^2-70245x+7189389\)
912.d2 912.d \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\mathsf{trivial}$ $1.131424581$ $[0, -1, 0, 315, 2349]$ \(y^2=x^3-x^2+315x+2349\)
912.e1 912.e \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1272, -16560]$ \(y^2=x^3-x^2-1272x-16560\)
912.e2 912.e \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -192, 720]$ \(y^2=x^3-x^2-192x+720\)
912.e3 912.e \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -172, 928]$ \(y^2=x^3-x^2-172x+928\)
912.e4 912.e \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 568, 4368]$ \(y^2=x^3-x^2+568x+4368\)
912.f1 912.f \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\mathsf{trivial}$ $0.344049278$ $[0, 1, 0, 3, -9]$ \(y^2=x^3+x^2+3x-9\)
912.g1 912.g \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -37, -109]$ \(y^2=x^3+x^2-37x-109\)
912.h1 912.h \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $0.269535280$ $[0, 1, 0, -1528, 22484]$ \(y^2=x^3+x^2-1528x+22484\)
912.h2 912.h \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $0.134767640$ $[0, 1, 0, -1368, 27540]$ \(y^2=x^3+x^2-1368x+27540\)
912.i1 912.i \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 55, -93]$ \(y^2=x^3+x^2+55x-93\)
912.j1 912.j \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -92, -360]$ \(y^2=x^3+x^2-92x-360\)
912.j2 912.j \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 3, -18]$ \(y^2=x^3+x^2+3x-18\)
912.k1 912.k \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1400832, 637689780]$ \(y^2=x^3+x^2-1400832x+637689780\)
912.k2 912.k \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -87552, 9941940]$ \(y^2=x^3+x^2-87552x+9941940\)
912.k3 912.k \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/4\Z$ $1$ $[0, 1, 0, -84992, 10553268]$ \(y^2=x^3+x^2-84992x+10553268\)
912.k4 912.k \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -5632, 144308]$ \(y^2=x^3+x^2-5632x+144308\)
912.l1 912.l \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -16, -28]$ \(y^2=x^3+x^2-16x-28\)
912.l2 912.l \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 24, -108]$ \(y^2=x^3+x^2+24x-108\)
  Download to