Show commands for:
SageMath
sage: E = EllipticCurve("91035.q1")
sage: E.isogeny_class()
Elliptic curves in class 91035bi
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
91035.q3 | 91035bi1 | [1, -1, 1, -6557, -191964] | [2] | 163840 | \(\Gamma_0(N)\)-optimal |
91035.q2 | 91035bi2 | [1, -1, 1, -19562, 817224] | [2, 2] | 327680 | |
91035.q4 | 91035bi3 | [1, -1, 1, 45463, 5056854] | [2] | 655360 | |
91035.q1 | 91035bi4 | [1, -1, 1, -292667, 61009566] | [2] | 655360 |
Rank
sage: E.rank()
The elliptic curves in class 91035bi have rank \(1\).
Modular form 91035.2.a.q
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.