Minimal Weierstrass equation
Minimal equation
Minimal equation
Simplified equation
\(y^2+y=x^3+x^2+202x-4801\)
|
(homogenize, simplify) |
\(y^2z+yz^2=x^3+x^2z+202xz^2-4801z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+261360x-227121840\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(\frac{61}{4}, \frac{359}{8}\right)\)
|
$\hat{h}(P)$ | ≈ | $1.4740983915716442093680400081$ |
Integral points
None
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 9075 \) | = | $3 \cdot 5^{2} \cdot 11^{2}$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $-10762233075 $ | = | $-1 \cdot 3^{5} \cdot 5^{2} \cdot 11^{6} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{20480}{243} \) | = | $2^{12} \cdot 3^{-5} \cdot 5$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $0.60584930230451245734577985772\dots$ | ||
Stable Faltings height: | $-0.86133798616702287711865182013\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $1.4740983915716442093680400081\dots$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $0.62963966739075306800684119902\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 10 $ = $ 5\cdot1\cdot2 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $1$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 9.2815082097041413567954090823 $ |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 8400 | ||
$ \Gamma_0(N) $-optimal: | yes | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 3 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$3$ | $5$ | $I_{5}$ | Split multiplicative | -1 | 1 | 5 | 5 |
$5$ | $1$ | $II$ | Additive | 1 | 2 | 2 | 0 |
$11$ | $2$ | $I_0^{*}$ | Additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$5$ | 5B.4.1 | 5.12.0.1 |
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ss | split | add | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 2,3 | 4 | - | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0,0 | 0 | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 9075n
consists of 2 curves linked by isogenies of
degree 5.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-11}) \) | \(\Z/5\Z\) | 2.0.11.1-5625.8-g2 |
$3$ | 3.1.300.1 | \(\Z/2\Z\) | Not in database |
$6$ | 6.0.270000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | Not in database |
$6$ | 6.0.119790000.2 | \(\Z/10\Z\) | Not in database |
$8$ | 8.2.40525144171875.1 | \(\Z/3\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/4\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/2\Z \oplus \Z/10\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/15\Z\) | Not in database |
$20$ | 20.4.120780545291490852832794189453125.1 | \(\Z/5\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.