# Properties

 Label 9075.s1 Conductor $9075$ Discriminant $-5.190\times 10^{13}$ j-invariant $$-\frac{102400}{3}$$ CM no Rank $1$ Torsion structure trivial

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 1, 1, -25208, 1570619])

gp: E = ellinit([0, 1, 1, -25208, 1570619])

magma: E := EllipticCurve([0, 1, 1, -25208, 1570619]);

## Simplified equation

 $$y^2+y=x^3+x^2-25208x+1570619$$ y^2+y=x^3+x^2-25208x+1570619 (homogenize, simplify) $$y^2z+yz^2=x^3+x^2z-25208xz^2+1570619z^3$$ y^2z+yz^2=x^3+x^2z-25208xz^2+1570619z^3 (dehomogenize, simplify) $$y^2=x^3-32670000x+73670850000$$ y^2=x^3-32670000x+73670850000 (homogenize, minimize)

## Mordell-Weil group structure

$$\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(-\frac{3051}{100}, \frac{1520107}{1000}\right)$$ (-3051/100, 1520107/1000) $\hat{h}(P)$ ≈ $7.3704919578582210468402000405$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

None

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$9075$$ = $3 \cdot 5^{2} \cdot 11^{2}$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-51901201171875$ = $-1 \cdot 3 \cdot 5^{10} \cdot 11^{6}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{102400}{3}$$ = $-1 \cdot 2^{12} \cdot 3^{-1} \cdot 5^{2}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $1.4105682585215626446461595243\dots$ Stable Faltings height: $-1.1295776382393729395521117090\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $7.3704919578582210468402000405\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.62963966739075306800684119902\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $2$  = $1\cdot1\cdot2$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $9.2815082097041413567954090823$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + 2 q^{2} + q^{3} + 2 q^{4} + 2 q^{6} - 3 q^{7} + q^{9} + 2 q^{12} + q^{13} - 6 q^{14} - 4 q^{16} + 2 q^{17} + 2 q^{18} + 5 q^{19} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 42000 $\Gamma_0(N)$-optimal: no Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 3 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$3$ $1$ $I_{1}$ Split multiplicative -1 1 1 1
$5$ $1$ $II^{*}$ Additive 1 2 10 0
$11$ $2$ $I_0^{*}$ Additive -1 2 6 0

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$5$ 5B.4.2 5.12.0.2

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 ss split add ord add ord ord ord ord ord ord ord ord ord ord 2,3 4 - 1 - 1 1 1 1 1 1 1 1 1 1 0,0 0 - 0 - 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 5.
Its isogeny class 9075.s consists of 2 curves linked by isogenies of degree 5.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.300.1 $$\Z/2\Z$$ Not in database $4$ 4.4.15125.1 $$\Z/5\Z$$ Not in database $6$ 6.0.270000.1 $$\Z/2\Z \oplus \Z/2\Z$$ Not in database $8$ 8.2.40525144171875.1 $$\Z/3\Z$$ Not in database $10$ 10.0.10318902451171875.2 $$\Z/5\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database $12$ Deg 12 $$\Z/10\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.