Properties

Label 9075.s
Number of curves $2$
Conductor $9075$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("s1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 9075.s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9075.s1 9075n2 \([0, 1, 1, -25208, 1570619]\) \(-102400/3\) \(-51901201171875\) \([]\) \(42000\) \(1.4106\)  
9075.s2 9075n1 \([0, 1, 1, 202, -4801]\) \(20480/243\) \(-10762233075\) \([]\) \(8400\) \(0.60585\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 9075.s have rank \(1\).

Complex multiplication

The elliptic curves in class 9075.s do not have complex multiplication.

Modular form 9075.2.a.s

sage: E.q_eigenform(10)
 
\(q + 2 q^{2} + q^{3} + 2 q^{4} + 2 q^{6} - 3 q^{7} + q^{9} + 2 q^{12} + q^{13} - 6 q^{14} - 4 q^{16} + 2 q^{17} + 2 q^{18} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.