# Properties

 Label 9075.l Number of curves $2$ Conductor $9075$ CM no Rank $0$ Graph # Related objects

Show commands: SageMath
sage: E = EllipticCurve("l1")

sage: E.isogeny_class()

## Elliptic curves in class 9075.l

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9075.l1 9075t1 $$[0, 1, 1, -70583, -7595131]$$ $$-56197120/3267$$ $$-2260816323046875$$ $$[]$$ $$43200$$ $$1.7025$$ $$\Gamma_0(N)$$-optimal
9075.l2 9075t2 $$[0, 1, 1, 383167, -13267006]$$ $$8990228480/5314683$$ $$-3677845753969921875$$ $$[]$$ $$129600$$ $$2.2518$$

## Rank

sage: E.rank()

The elliptic curves in class 9075.l have rank $$0$$.

## Complex multiplication

The elliptic curves in class 9075.l do not have complex multiplication.

## Modular form9075.2.a.l

sage: E.q_eigenform(10)

$$q + q^{3} - 2 q^{4} + q^{7} + q^{9} - 2 q^{12} + q^{13} + 4 q^{16} + 6 q^{17} + 7 q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 