Learn more

Refine search


Results (1-50 of 125 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
90480.a1 90480.a \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -80236, 4396240]$ \(y^2=x^3-x^2-80236x+4396240\)
90480.a2 90480.a \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -68491, 6919066]$ \(y^2=x^3-x^2-68491x+6919066\)
90480.b1 90480.b \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $2$ $\Z/2\Z$ $2.317360947$ $[0, -1, 0, -156, 576]$ \(y^2=x^3-x^2-156x+576\)
90480.b2 90480.b \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $2$ $\Z/2\Z$ $2.317360947$ $[0, -1, 0, 424, 3360]$ \(y^2=x^3-x^2+424x+3360\)
90480.c1 90480.c \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $6.168231970$ $[0, -1, 0, -21141, -1279395]$ \(y^2=x^3-x^2-21141x-1279395\)
90480.d1 90480.d \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $2$ $\Z/2\Z$ $5.986307341$ $[0, -1, 0, -1035536, 405896640]$ \(y^2=x^3-x^2-1035536x+405896640\)
90480.d2 90480.d \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $2$ $\Z/2\Z$ $23.94522936$ $[0, -1, 0, -416016, -99054144]$ \(y^2=x^3-x^2-416016x-99054144\)
90480.d3 90480.d \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $5.986307341$ $[0, -1, 0, -70416, 5178816]$ \(y^2=x^3-x^2-70416x+5178816\)
90480.d4 90480.d \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $2$ $\Z/2\Z$ $23.94522936$ $[0, -1, 0, 11504, 525760]$ \(y^2=x^3-x^2+11504x+525760\)
90480.e1 90480.e \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $7.161593028$ $[0, -1, 0, -5216856, 4588012656]$ \(y^2=x^3-x^2-5216856x+4588012656\)
90480.e2 90480.e \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.580796514$ $[0, -1, 0, -330936, 69513840]$ \(y^2=x^3-x^2-330936x+69513840\)
90480.e3 90480.e \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $1.790398257$ $[0, -1, 0, -61816, -4547984]$ \(y^2=x^3-x^2-61816x-4547984\)
90480.e4 90480.e \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $7.161593028$ $[0, -1, 0, 249064, 286665840]$ \(y^2=x^3-x^2+249064x+286665840\)
90480.f1 90480.f \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $2$ $\Z/2\Z$ $3.219220900$ $[0, -1, 0, -4836, 131040]$ \(y^2=x^3-x^2-4836x+131040\)
90480.f2 90480.f \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $2$ $\Z/2\Z$ $3.219220900$ $[0, -1, 0, -4256, 163056]$ \(y^2=x^3-x^2-4256x+163056\)
90480.g1 90480.g \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -90201, 10479285]$ \(y^2=x^3-x^2-90201x+10479285\)
90480.h1 90480.h \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -733281, -241453875]$ \(y^2=x^3-x^2-733281x-241453875\)
90480.i1 90480.i \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -56381, 66357681]$ \(y^2=x^3-x^2-56381x+66357681\)
90480.i2 90480.i \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 6259, -2446095]$ \(y^2=x^3-x^2+6259x-2446095\)
90480.j1 90480.j \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $31.28983210$ $[0, -1, 0, -67847096, -202437582480]$ \(y^2=x^3-x^2-67847096x-202437582480\)
90480.j2 90480.j \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $10.42994403$ $[0, -1, 0, -66733256, -209804860944]$ \(y^2=x^3-x^2-66733256x-209804860944\)
90480.j3 90480.j \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $20.85988807$ $[0, -1, 0, -66723976, -209866138640]$ \(y^2=x^3-x^2-66723976x-209866138640\)
90480.j4 90480.j \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $62.57966421$ $[0, -1, 0, 57024584, -863358410384]$ \(y^2=x^3-x^2+57024584x-863358410384\)
90480.k1 90480.k \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $0.882412256$ $[0, -1, 0, -265, 1765]$ \(y^2=x^3-x^2-265x+1765\)
90480.l1 90480.l \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $2.315983029$ $[0, -1, 0, -30480, 2008512]$ \(y^2=x^3-x^2-30480x+2008512\)
90480.l2 90480.l \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $4.631966059$ $[0, -1, 0, 6640, 6552000]$ \(y^2=x^3-x^2+6640x+6552000\)
90480.m1 90480.m \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -795880, -273299600]$ \(y^2=x^3-x^2-795880x-273299600\)
90480.n1 90480.n \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $1.801809167$ $[0, -1, 0, 395, 36217]$ \(y^2=x^3-x^2+395x+36217\)
90480.o1 90480.o \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $1.151370937$ $[0, -1, 0, -323445, 70913277]$ \(y^2=x^3-x^2-323445x+70913277\)
90480.p1 90480.p \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $2.974307640$ $[0, -1, 0, -1654140, -562964400]$ \(y^2=x^3-x^2-1654140x-562964400\)
90480.p2 90480.p \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $1.487153820$ $[0, -1, 0, -638515, 189816850]$ \(y^2=x^3-x^2-638515x+189816850\)
90480.q1 90480.q \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -86505, 7428960]$ \(y^2=x^3-x^2-86505x+7428960\)
90480.q2 90480.q \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 208740, 46873692]$ \(y^2=x^3-x^2+208740x+46873692\)
90480.r1 90480.r \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -15705, -752328]$ \(y^2=x^3-x^2-15705x-752328\)
90480.r2 90480.r \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -15660, -756900]$ \(y^2=x^3-x^2-15660x-756900\)
90480.s1 90480.s \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/4\Z$ $3.150791495$ $[0, -1, 0, -150559240, -682367176400]$ \(y^2=x^3-x^2-150559240x-682367176400\)
90480.s2 90480.s \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $6.301582990$ $[0, -1, 0, -148867960, -699066198608]$ \(y^2=x^3-x^2-148867960x-699066198608\)
90480.s3 90480.s \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $12.60316598$ $[0, -1, 0, -148867880, -699066987600]$ \(y^2=x^3-x^2-148867880x-699066987600\)
90480.s4 90480.s \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $12.60316598$ $[0, -1, 0, -147177960, -715714726608]$ \(y^2=x^3-x^2-147177960x-715714726608\)
90480.t1 90480.t \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $1.324372652$ $[0, -1, 0, -5, 12525]$ \(y^2=x^3-x^2-5x+12525\)
90480.u1 90480.u \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $3.359491314$ $[0, -1, 0, -13320, -498960]$ \(y^2=x^3-x^2-13320x-498960\)
90480.u2 90480.u \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $6.718982629$ $[0, -1, 0, 23800, -2815248]$ \(y^2=x^3-x^2+23800x-2815248\)
90480.v1 90480.v \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -66825520, 210284670400]$ \(y^2=x^3-x^2-66825520x+210284670400\)
90480.v2 90480.v \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -4185520, 3271998400]$ \(y^2=x^3-x^2-4185520x+3271998400\)
90480.v3 90480.v \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\Z/4\Z$ $1$ $[0, -1, 0, -1265200, 7750601152]$ \(y^2=x^3-x^2-1265200x+7750601152\)
90480.v4 90480.v \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -453040, -33485888]$ \(y^2=x^3-x^2-453040x-33485888\)
90480.w1 90480.w \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $2.672740055$ $[0, -1, 0, -41880, -3284400]$ \(y^2=x^3-x^2-41880x-3284400\)
90480.w2 90480.w \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $0.668185013$ $[0, -1, 0, -17960, 901392]$ \(y^2=x^3-x^2-17960x+901392\)
90480.w3 90480.w \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.336370027$ $[0, -1, 0, -2880, -39600]$ \(y^2=x^3-x^2-2880x-39600\)
90480.w4 90480.w \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $2.672740055$ $[0, -1, 0, 500, -4448]$ \(y^2=x^3-x^2+500x-4448\)
Next   Download to