Properties

Label 90354p
Number of curves 2
Conductor 90354
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("90354.q1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 90354p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
90354.q1 90354p1 [1, 1, 1, -652357, -201137401] [2] 1838592 \(\Gamma_0(N)\)-optimal
90354.q2 90354p2 [1, 1, 1, -145827, -504852789] [2] 3677184  

Rank

sage: E.rank()
 

The elliptic curves in class 90354p have rank \(1\).

Modular form 90354.2.a.q

sage: E.q_eigenform(10)
 
\( q + q^{2} - q^{3} + q^{4} + 2q^{5} - q^{6} + 2q^{7} + q^{8} + q^{9} + 2q^{10} + q^{11} - q^{12} + 6q^{13} + 2q^{14} - 2q^{15} + q^{16} + 2q^{17} + q^{18} - 6q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.