Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 1, -157334, 23955059]) # or

sage: E = EllipticCurve("90354m2")

gp: E = ellinit([1, 1, 1, -157334, 23955059]) \\ or

gp: E = ellinit("90354m2")

magma: E := EllipticCurve([1, 1, 1, -157334, 23955059]); // or

magma: E := EllipticCurve("90354m2");

$$y^2 + x y + y = x^{3} + x^{2} - 157334 x + 23955059$$

## Mordell-Weil group structure

$$\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(237, 103\right)$$ $$\hat{h}(P)$$ ≈ 0.7082255539849855

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(227, -71\right)$$, $$\left(227, -157\right)$$, $$\left(237, 103\right)$$, $$\left(237, -341\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)  magma: Conductor(E); Conductor: $$90354$$ = $$2 \cdot 3 \cdot 11 \cdot 37^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-2349422295264$$ = $$-1 \cdot 2^{5} \cdot 3^{2} \cdot 11^{5} \cdot 37^{3}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{8503279704467029}{46382688}$$ = $$-1 \cdot 2^{-5} \cdot 3^{-2} \cdot 11^{-5} \cdot 401^{3} \cdot 509^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$0.708225553985$$ sage: E.period_lattice().omega()  gp: E.omega  magma: RealPeriod(E); Real period: $$0.725904577805$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$20$$  = $$5\cdot2\cdot1\cdot2$$ sage: E.torsion_order()  gp: elltors(E)  magma: Order(TorsionSubgroup(E)); Torsion order: $$1$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 90354.2.a.r

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

magma: ModularForm(E);

$$q + q^{2} - q^{3} + q^{4} + 3q^{5} - q^{6} - 2q^{7} + q^{8} + q^{9} + 3q^{10} - q^{11} - q^{12} + 4q^{13} - 2q^{14} - 3q^{15} + q^{16} - 3q^{17} + q^{18} - 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 504000 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$10.2820834351$$

## Local data

This elliptic curve is not semistable.

sage: E.local_data()

gp: ellglobalred(E)

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$5$$ $$I_{5}$$ Split multiplicative -1 1 5 5
$$3$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2
$$11$$ $$1$$ $$I_{5}$$ Non-split multiplicative 1 1 5 5
$$37$$ $$2$$ $$III$$ Additive -1 2 3 0

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$5$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 split nonsplit ordinary ordinary nonsplit ordinary ordinary ordinary ordinary ordinary ss add ordinary ordinary ordinary 8 1 1 1 1 1 1 1 1 1 1,1 - 1 1 1 0 0 0 0 0 0 0 0 0 0 0,0 - 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 5.
Its isogeny class 90354m consists of 2 curves linked by isogenies of degree 5.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.1.3256.1 $$\Z/2\Z$$ Not in database
4 4.4.6331625.2 $$\Z/5\Z$$ Not in database
6 6.0.34518601216.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.