Properties

Label 90354.i
Number of curves 2
Conductor 90354
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("90354.i1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 90354.i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
90354.i1 90354g2 [1, 0, 1, -301348416, -2017081437554] [] 21098880  
90354.i2 90354g1 [1, 0, 1, 6368559, -13696226156] [3] 7032960 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 90354.i have rank \(0\).

Modular form 90354.2.a.i

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{3} + q^{4} - q^{6} - q^{7} - q^{8} + q^{9} - q^{11} + q^{12} - q^{13} + q^{14} + q^{16} - q^{18} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.