Properties

Label 9025.h
Number of curves $2$
Conductor $9025$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("h1")
 
E.isogeny_class()
 

Elliptic curves in class 9025.h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9025.h1 9025g2 \([1, -1, 0, -8912, -313929]\) \(13312053/361\) \(2122945380125\) \([2]\) \(11520\) \(1.1456\)  
9025.h2 9025g1 \([1, -1, 0, 113, -16104]\) \(27/19\) \(-111733967375\) \([2]\) \(5760\) \(0.79899\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 9025.h have rank \(1\).

Complex multiplication

The elliptic curves in class 9025.h do not have complex multiplication.

Modular form 9025.2.a.h

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{4} + 2 q^{7} - 3 q^{8} - 3 q^{9} - 4 q^{11} + 2 q^{13} + 2 q^{14} - q^{16} + 4 q^{17} - 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.