Show commands:
SageMath
E = EllipticCurve("h1")
E.isogeny_class()
Elliptic curves in class 9025.h
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
9025.h1 | 9025g2 | \([1, -1, 0, -8912, -313929]\) | \(13312053/361\) | \(2122945380125\) | \([2]\) | \(11520\) | \(1.1456\) | |
9025.h2 | 9025g1 | \([1, -1, 0, 113, -16104]\) | \(27/19\) | \(-111733967375\) | \([2]\) | \(5760\) | \(0.79899\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 9025.h have rank \(1\).
Complex multiplication
The elliptic curves in class 9025.h do not have complex multiplication.Modular form 9025.2.a.h
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.