Show commands:
SageMath
E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 9025.g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
9025.g1 | 9025b2 | \([0, -1, 1, -2629283, -1221033782]\) | \(7575076864/1953125\) | \(518297211944580078125\) | \([]\) | \(344736\) | \(2.6840\) | |
9025.g2 | 9025b1 | \([0, -1, 1, -914533, 336816593]\) | \(318767104/125\) | \(33171021564453125\) | \([]\) | \(114912\) | \(2.1347\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 9025.g have rank \(1\).
Complex multiplication
The elliptic curves in class 9025.g do not have complex multiplication.Modular form 9025.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.