Properties

Label 9025.f
Number of curves $2$
Conductor $9025$
CM \(\Q(\sqrt{-19}) \)
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 9025.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
9025.f1 9025a2 \([0, 0, 1, -342950, -77378094]\) \(-884736\) \(-5041995277796875\) \([]\) \(53200\) \(1.9268\)   \(-19\)
9025.f2 9025a1 \([0, 0, 1, -950, 11281]\) \(-884736\) \(-107171875\) \([]\) \(2800\) \(0.45457\) \(\Gamma_0(N)\)-optimal \(-19\)

Rank

sage: E.rank()
 

The elliptic curves in class 9025.f have rank \(1\).

Complex multiplication

Each elliptic curve in class 9025.f has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-19}) \).

Modular form 9025.2.a.f

sage: E.q_eigenform(10)
 
\(q - 2 q^{4} - 3 q^{7} - 3 q^{9} - 5 q^{11} + 4 q^{16} + 7 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 19 \\ 19 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.