Show commands:
SageMath
E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 9025.f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
9025.f1 | 9025a2 | \([0, 0, 1, -342950, -77378094]\) | \(-884736\) | \(-5041995277796875\) | \([]\) | \(53200\) | \(1.9268\) | \(-19\) | |
9025.f2 | 9025a1 | \([0, 0, 1, -950, 11281]\) | \(-884736\) | \(-107171875\) | \([]\) | \(2800\) | \(0.45457\) | \(\Gamma_0(N)\)-optimal | \(-19\) |
Rank
sage: E.rank()
The elliptic curves in class 9025.f have rank \(1\).
Complex multiplication
Each elliptic curve in class 9025.f has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-19}) \).Modular form 9025.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 19 \\ 19 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.