Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 9025.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
9025.a1 | 9025j2 | \([0, 0, 1, -94145, -11118444]\) | \(2045023375454208\) | \(45125\) | \([]\) | \(18720\) | \(1.1307\) | |
9025.a2 | 9025j1 | \([0, 0, 1, -95, 356]\) | \(2101248\) | \(45125\) | \([]\) | \(1440\) | \(-0.15176\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 9025.a have rank \(1\).
Complex multiplication
The elliptic curves in class 9025.a do not have complex multiplication.Modular form 9025.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 13 \\ 13 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.