Properties

Label 9025.a
Number of curves $2$
Conductor $9025$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 9025.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9025.a1 9025j2 \([0, 0, 1, -94145, -11118444]\) \(2045023375454208\) \(45125\) \([]\) \(18720\) \(1.1307\)  
9025.a2 9025j1 \([0, 0, 1, -95, 356]\) \(2101248\) \(45125\) \([]\) \(1440\) \(-0.15176\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 9025.a have rank \(1\).

Complex multiplication

The elliptic curves in class 9025.a do not have complex multiplication.

Modular form 9025.2.a.a

sage: E.q_eigenform(10)
 
\(q - 2 q^{2} + 2 q^{4} - 4 q^{7} - 3 q^{9} - q^{11} + 2 q^{13} + 8 q^{14} - 4 q^{16} - 2 q^{17} + 6 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 13 \\ 13 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.