sage:E = EllipticCurve("c1")
E.isogeny_class()
sage:E.rank()
The elliptic curves in class 900c have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
5 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+T+7T2 |
1.7.b
|
11 |
1+6T+11T2 |
1.11.g
|
13 |
1−5T+13T2 |
1.13.af
|
17 |
1−6T+17T2 |
1.17.ag
|
19 |
1−5T+19T2 |
1.19.af
|
23 |
1−6T+23T2 |
1.23.ag
|
29 |
1−6T+29T2 |
1.29.ag
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
Each elliptic curve in class 900c has complex multiplication by an order in the imaginary quadratic field
Q(−3).
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1331)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.
Elliptic curves in class 900c
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
CM discriminant |
900.d2 |
900c1 |
[0,0,0,0,100] |
0 |
−4320000 |
[3] |
144 |
−0.047887
|
Γ0(N)-optimal |
−3 |
900.d1 |
900c2 |
[0,0,0,0,−2700] |
0 |
−3149280000 |
[] |
432 |
0.50142
|
|
−3 |