# Properties

 Label 8880.f1 Conductor $8880$ Discriminant $-2.328\times 10^{14}$ j-invariant $$-\frac{39390416456458249}{56832000000}$$ CM no Rank $1$ Torsion structure trivial

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, -1, 0, -113416, 14757616])

gp: E = ellinit([0, -1, 0, -113416, 14757616])

magma: E := EllipticCurve([0, -1, 0, -113416, 14757616]);

$$y^2=x^3-x^2-113416x+14757616$$

## Mordell-Weil group structure

$\Z$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(186, 250\right)$$ $\hat{h}(P)$ ≈ $1.3924566103957133446484699762$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$(29,\pm 3390)$$, $$(186,\pm 250)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$8880$$ = $2^{4} \cdot 3 \cdot 5 \cdot 37$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-232783872000000$ = $-1 \cdot 2^{27} \cdot 3 \cdot 5^{6} \cdot 37$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{39390416456458249}{56832000000}$$ = $-1 \cdot 2^{-15} \cdot 3^{-1} \cdot 5^{-6} \cdot 7^{3} \cdot 13^{3} \cdot 37^{-1} \cdot 3739^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $1.6591636046027255929314171152\dots$ Stable Faltings height: $0.96601642404278028351418499374\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $1.3924566103957133446484699762\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.55684676711576049770972373547\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $4$  = $2\cdot1\cdot2\cdot1$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $3.1015398473912921475394396328202949606$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{3} - q^{5} + q^{7} + q^{9} - 3q^{11} - 7q^{13} + q^{15} - 3q^{17} + q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 51840 $\Gamma_0(N)$-optimal: no Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $I_{19}^{*}$ Additive -1 4 27 15
$3$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1
$5$ $2$ $I_{6}$ Non-split multiplicative 1 1 6 6
$37$ $1$ $I_{1}$ Split multiplicative -1 1 1 1

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$3$ 3B 3.4.0.1

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add nonsplit nonsplit ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary split ss ordinary ordinary - 3 3 1 1 1 1 1 1 1 1 2 1,1 1 3 - 0 0 0 0 0 0 0 0 0 0 0 0,0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 3.
Its isogeny class 8880.f consists of 2 curves linked by isogenies of degree 3.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{3})$$ $$\Z/3\Z$$ Not in database $3$ 3.1.888.1 $$\Z/2\Z$$ Not in database $6$ 6.0.700227072.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database $6$ 6.0.7082709304896.2 $$\Z/3\Z$$ Not in database $6$ 6.2.37850112.1 $$\Z/6\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database $12$ Deg 12 $$\Z/3\Z \times \Z/3\Z$$ Not in database $12$ Deg 12 $$\Z/2\Z \times \Z/6\Z$$ Not in database $18$ 18.6.8886538705637243245439001341952000000000000.3 $$\Z/9\Z$$ Not in database $18$ 18.0.17930985439222158198397768466405276524505726976.1 $$\Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.