# Properties

 Label 882.a Number of curves $2$ Conductor $882$ CM no Rank $1$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("882.a1")

sage: E.isogeny_class()

## Elliptic curves in class 882.a

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
882.a1 882a1 [1, -1, 0, -4566, 119916]  1008 $$\Gamma_0(N)$$-optimal
882.a2 882a2 [1, -1, 0, 579, 366533] [] 3024

## Rank

sage: E.rank()

The elliptic curves in class 882.a have rank $$1$$.

## Modular form882.2.a.a

sage: E.q_eigenform(10)

$$q - q^{2} + q^{4} - 3q^{5} - q^{8} + 3q^{10} + 3q^{11} + 2q^{13} + q^{16} - 6q^{17} + 2q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 