Properties

Label 88.a1
Conductor $88$
Discriminant $-2816$
j-invariant \( -\frac{27648}{11} \)
CM no
Rank $1$
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2=x^3-4x+4\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z=x^3-4xz^2+4z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-4x+4\) Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -4, 4])
 
gp: E = ellinit([0, 0, 0, -4, 4])
 
magma: E := EllipticCurve([0, 0, 0, -4, 4]);
 
oscar: E = EllipticCurve([0, 0, 0, -4, 4])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z\)

magma: MordellWeilGroup(E);
 

Infinite order Mordell-Weil generator and height

$P$ =  \(\left(2, 2\right)\) Copy content Toggle raw display
$\hat{h}(P)$ ≈  $0.040264364336880642943215152248$

sage: E.gens()
 
magma: Generators(E);
 
gp: E.gen
 

Integral points

\((-2,\pm 2)\), \((0,\pm 2)\), \((1,\pm 1)\), \((2,\pm 2)\), \((6,\pm 14)\), \((8,\pm 22)\), \((310,\pm 5458)\) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: \( 88 \)  =  $2^{3} \cdot 11$
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: $-2816 $  =  $-1 \cdot 2^{8} \cdot 11 $
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: \( -\frac{27648}{11} \)  =  $-1 \cdot 2^{10} \cdot 3^{3} \cdot 11^{-1}$
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $-0.62921188472456407340791357381\dots$
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: $-1.0913100050978609463527349881\dots$
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
$abc$ quality: $0.7866607319557362\dots$
Szpiro ratio: $3.6396042860016586\dots$

BSD invariants

Analytic rank: $1$
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Regulator: $0.040264364336880642943215152248\dots$
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: $4.2525295331483600253449531458\dots$
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $ 4 $  = $ 2^{2}\cdot1 $
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: $1$
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Analytic order of Ш: $1$ ( rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Special value: $ L'(E,1) $ ≈ $ 0.68490159390412206930227406664 $
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

BSD formula

$\displaystyle 0.684901594 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 4.252530 \cdot 0.040264 \cdot 4}{1^2} \approx 0.684901594$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   88.2.a.a

\( q - 3 q^{3} - 3 q^{5} - 2 q^{7} + 6 q^{9} - q^{11} + 9 q^{15} - 6 q^{17} + 4 q^{19} + O(q^{20}) \) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 8
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data

This elliptic curve is not semistable. There are 2 primes of bad reduction:

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $4$ $I_{1}^{*}$ Additive 1 3 8 0
$11$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 1, 21, 0], [1, 2, 0, 1], [1, 0, 2, 1], [21, 2, 20, 3], [13, 2, 13, 3]]
 
GL(2,Integers(22)).subgroup(gens)
 
Gens := [[1, 1, 21, 0], [1, 2, 0, 1], [1, 0, 2, 1], [21, 2, 20, 3], [13, 2, 13, 3]];
 
sub<GL(2,Integers(22))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 22.2.0.a.1, level \( 22 = 2 \cdot 11 \), index $2$, genus $0$, and generators

$\left(\begin{array}{rr} 1 & 1 \\ 21 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 21 & 2 \\ 20 & 3 \end{array}\right),\left(\begin{array}{rr} 13 & 2 \\ 13 & 3 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[22])$ is a degree-$39600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/22\Z)$.

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 88.a consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$3$ 3.1.44.1 \(\Z/2\Z\) Not in database
$6$ 6.0.21296.1 \(\Z/2\Z \oplus \Z/2\Z\) Not in database
$8$ 8.2.32788343808.1 \(\Z/3\Z\) Not in database
$12$ 12.2.20433779818496.1 \(\Z/4\Z\) Not in database

We only show fields where the torsion growth is primitive.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add ss ord ord nonsplit ss ord ord ord ord ord ord ord ord ord
$\lambda$-invariant(s) - 1,1 1 1 1 1,1 1 1 1 5 1 1 3 1 1
$\mu$-invariant(s) - 0,0 0 0 0 0,0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

$p$-adic regulators

Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.

Additional information

$E$ parametrizes triangles $ABC$ with rational sides $a,b,c$ for which the altitude from $A$, angle bisector to $B$, and median from $C$ are concurrent. Equivalently, $c (a^2 + b^2 - c^2) = a (a^2 + c^2 - b^2)$ [proof by standard triangle geometry, including "Ceva's theorem"]. This elliptic curve is put in standard Weierstrass form by taking $c = ((2/x) - 1) a$, when $y^2 = x^3 - 4x + 4$. The generator $(x,y)=(2,2)$ of the Mordell-Weil group corresponds to an equilateral triangle. The higher multiples that yield positive $(a:b:c)$ are the 7th, 10th, and 12th, with x-coordinates $10/9$, $88/49$, $206/961$, and triangles $(a:b:c) = (15:13:12), (308:277:35), (3193:26447:26598).$ This has been independently observed many times, going back at least to 1939; see [Albime triangles and Guy's favourite elliptic curve] (in Expo. Math. 2015) by Erika Bakker, Jasbir S. Chahal, and Jaap Top.

The title of the Bakker-Chahal-Top paper (and of this knowl) come from Richard Guy's paper "My Favorite Elliptic Curve: A Tale of Two Types of Triangles", Amer. Math. Monthly 102 #9 (Nov. 1995), 771-781, where the same curve also arises in two other contexts; notably, it parametrizes pairs $(R,T)$ of a rectangle $R$ and an isosceles triangle $R$, both with rational sides, and with the same perimeter and area. (For example, $R$ can be a $2 \times 6$ rectangle of perimeter $16$ and area $12$, same as a 5-5-6 triangle $T$ made from two copies of the Pythagorean 3-4-5.)