Properties

Label 87362q
Number of curves $3$
Conductor $87362$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 87362q have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(11\)\(1\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 87362q do not have complex multiplication.

Modular form 87362.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} + q^{7} - q^{8} - 2 q^{9} - q^{12} + 5 q^{13} - q^{14} + q^{16} - 3 q^{17} + 2 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 87362q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
87362.g2 87362q1 \([1, 1, 0, -677965, 214647701]\) \(-413493625/152\) \(-12668386494516632\) \([]\) \(777600\) \(2.0577\) \(\Gamma_0(N)\)-optimal
87362.g3 87362q2 \([1, 1, 0, 414060, 816877648]\) \(94196375/3511808\) \(-292690401569312265728\) \([]\) \(2332800\) \(2.6070\)  
87362.g1 87362q3 \([1, 1, 0, -3735635, -22355849171]\) \(-69173457625/2550136832\) \(-212540256589988350656512\) \([]\) \(6998400\) \(3.1563\)