Properties

Label 87120.fo
Number of curves $2$
Conductor $87120$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("fo1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 87120.fo

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
87120.fo1 87120de2 \([0, 0, 0, -96987, 11441034]\) \(685429074513/12500000\) \(1839974400000000\) \([2]\) \(368640\) \(1.7240\)  
87120.fo2 87120de1 \([0, 0, 0, -12507, -267894]\) \(1469878353/640000\) \(94206689280000\) \([2]\) \(184320\) \(1.3775\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 87120.fo have rank \(1\).

Complex multiplication

The elliptic curves in class 87120.fo do not have complex multiplication.

Modular form 87120.2.a.fo

sage: E.q_eigenform(10)
 
\(q + q^{5} + 2q^{7} - 2q^{13} - 2q^{17} + 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.