Properties

Label 87120.en
Number of curves $2$
Conductor $87120$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("en1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 87120.en

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
87120.en1 87120fs2 \([0, 0, 0, -33776787, 75329028434]\) \(55025549689/192000\) \(14870157093080137728000\) \([]\) \(5474304\) \(3.1171\)  
87120.en2 87120fs1 \([0, 0, 0, -2152227, -1132832734]\) \(14235529/1080\) \(83644633648575774720\) \([]\) \(1824768\) \(2.5678\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 87120.en have rank \(1\).

Complex multiplication

The elliptic curves in class 87120.en do not have complex multiplication.

Modular form 87120.2.a.en

sage: E.q_eigenform(10)
 
\(q + q^{5} - q^{7} + q^{13} - 3q^{17} - q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.