Properties

Label 87120.bm
Number of curves $2$
Conductor $87120$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("bm1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 87120.bm

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
87120.bm1 87120ct1 \([0, 0, 0, -29403, 1807498]\) \(14348907/1100\) \(215512521523200\) \([2]\) \(184320\) \(1.4950\) \(\Gamma_0(N)\)-optimal
87120.bm2 87120ct2 \([0, 0, 0, 28677, 8068522]\) \(13312053/151250\) \(-29632971709440000\) \([2]\) \(368640\) \(1.8416\)  

Rank

sage: E.rank()
 

The elliptic curves in class 87120.bm have rank \(1\).

Complex multiplication

The elliptic curves in class 87120.bm do not have complex multiplication.

Modular form 87120.2.a.bm

sage: E.q_eigenform(10)
 
\(q - q^{5} + 2q^{17} + 2q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.