Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-43633x+3493988\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-43633xz^2+3493988z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-3534300x+2557720125\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(128, 150)$ | $1.4407297174743668786794615425$ | $\infty$ |
Integral points
\((128,\pm 150)\)
Invariants
| Conductor: | $N$ | = | \( 86700 \) | = | $2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-1219218750000$ | = | $-1 \cdot 2^{4} \cdot 3^{3} \cdot 5^{10} \cdot 17^{2} $ |
|
| j-invariant: | $j$ | = | \( -\frac{127157223424}{16875} \) | = | $-1 \cdot 2^{14} \cdot 3^{-3} \cdot 5^{-4} \cdot 7^{3} \cdot 11^{3} \cdot 17$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3386461811315578642708527494$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.16932405928151010621019339401$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0059578363706423$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.8402602532153782$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.4407297174743668786794615425$ |
|
| Real period: | $\Omega$ | ≈ | $0.83250182273084125113047460251$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 6 $ = $ 1\cdot3\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.1964606951594022443415570521 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.196460695 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.832502 \cdot 1.440730 \cdot 6}{1^2} \\ & \approx 7.196460695\end{aligned}$$
Modular invariants
Modular form 86700.2.a.bk
For more coefficients, see the Downloads section to the right.
| Modular degree: | 186624 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $IV$ | additive | -1 | 2 | 4 | 0 |
| $3$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $5$ | $2$ | $I_{4}^{*}$ | additive | 1 | 2 | 10 | 4 |
| $17$ | $1$ | $II$ | additive | 1 | 2 | 2 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 203 & 0 \\ 0 & 509 \end{array}\right),\left(\begin{array}{rr} 505 & 6 \\ 504 & 7 \end{array}\right),\left(\begin{array}{rr} 111 & 410 \\ 370 & 211 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 426 & 295 \\ 445 & 36 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[510])$ is a degree-$676823040$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/510\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 21675 = 3 \cdot 5^{2} \cdot 17^{2} \) |
| $3$ | split multiplicative | $4$ | \( 28900 = 2^{2} \cdot 5^{2} \cdot 17^{2} \) |
| $5$ | additive | $18$ | \( 3468 = 2^{2} \cdot 3 \cdot 17^{2} \) |
| $17$ | additive | $66$ | \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 86700bh
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 17340f1, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{85}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.867.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.2255067.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.1916806950000.6 | \(\Z/3\Z\) | not in database |
| $6$ | 6.2.1597339125.1 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.6.2946737613045878810673001154958285000000000000.1 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.7042634115358463031702375000000000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | add | ord | ss | ord | add | ord | ord | ss | ord | ord | ss | ord | ord |
| $\lambda$-invariant(s) | - | 2 | - | 3 | 1,1 | 1 | - | 1 | 1 | 1,1 | 1 | 1 | 1,1 | 1 | 3 |
| $\mu$-invariant(s) | - | 0 | - | 0 | 0,0 | 0 | - | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.