Show commands:
SageMath
E = EllipticCurve("k1")
E.isogeny_class()
Elliptic curves in class 8670.k
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
8670.k1 | 8670l2 | \([1, 0, 1, -13349928, 18771756406]\) | \(10901014250685308569/1040774054400\) | \(25121755551489753600\) | \([2]\) | \(580608\) | \(2.7592\) | |
8670.k2 | 8670l1 | \([1, 0, 1, -772648, 338494838]\) | \(-2113364608155289/828431400960\) | \(-19996320102438666240\) | \([2]\) | \(290304\) | \(2.4126\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 8670.k have rank \(1\).
Complex multiplication
The elliptic curves in class 8670.k do not have complex multiplication.Modular form 8670.2.a.k
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.