Properties

Label 86640bu
Number of curves $2$
Conductor $86640$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("86640.w1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 86640bu

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
86640.w2 86640bu1 [0, -1, 0, -37816, 156016] [2] 737280 \(\Gamma_0(N)\)-optimal
86640.w1 86640bu2 [0, -1, 0, -426936, 107241840] [2] 1474560  

Rank

sage: E.rank()
 

The elliptic curves in class 86640bu have rank \(0\).

Modular form 86640.2.a.w

sage: E.q_eigenform(10)
 
\( q - q^{3} - q^{5} + 4q^{7} + q^{9} - 6q^{11} - 4q^{13} + q^{15} + 6q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.