Show commands for:
SageMath

sage: E = EllipticCurve("86640.q1")

sage: E.isogeny_class()

## Elliptic curves in class 86640bn

sage: E.isogeny_class().curves

LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|

86640.q2 | 86640bn1 | [0, -1, 0, -23376, -1894464] | [2] | 245760 | \(\Gamma_0(N)\)-optimal |

86640.q1 | 86640bn2 | [0, -1, 0, -412496, -101820480] | [2] | 491520 |

## Rank

sage: E.rank()

The elliptic curves in class 86640bn have rank \(0\).

## Modular form 86640.2.a.q

sage: E.q_eigenform(10)

## Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.