# Properties

 Label 86640.db Number of curves $2$ Conductor $86640$ CM no Rank $1$ Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("86640.db1")

sage: E.isogeny_class()

## Elliptic curves in class 86640.db

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
86640.db1 86640dd2 [0, 1, 0, -154124016, -734647036716] [2] 28016640
86640.db2 86640dd1 [0, 1, 0, -13651696, -988203820] [2] 14008320 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 86640.db have rank $$1$$.

## Modular form 86640.2.a.db

sage: E.q_eigenform(10)

$$q + q^{3} - q^{5} + 4q^{7} + q^{9} - 6q^{11} + 4q^{13} - q^{15} + 6q^{17} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.