Properties

Label 8664.i
Number of curves $2$
Conductor $8664$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Elliptic curves in class 8664.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8664.i1 8664l2 \([0, 1, 0, -153184, -22977904]\) \(1203052/9\) \(2973889822731264\) \([2]\) \(60800\) \(1.7993\)  
8664.i2 8664l1 \([0, 1, 0, -16004, 178080]\) \(5488/3\) \(247824151894272\) \([2]\) \(30400\) \(1.4527\) \(\Gamma_0(N)\)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 8664.i have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8664.i do not have complex multiplication.

Modular form 8664.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} - 4 q^{7} + q^{9} + 2 q^{11} - 2 q^{15} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.