Properties

Label 8664.f
Number of curves $4$
Conductor $8664$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 8664.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8664.f1 8664i3 \([0, -1, 0, -459312, -116340660]\) \(111223479026/3518667\) \(339023439791364096\) \([2]\) \(69120\) \(2.1384\)  
8664.f2 8664i2 \([0, -1, 0, -69432, 4522140]\) \(768400132/263169\) \(12678161875854336\) \([2, 2]\) \(34560\) \(1.7918\)  
8664.f3 8664i1 \([0, -1, 0, -62212, 5992132]\) \(2211014608/513\) \(6178441459968\) \([4]\) \(17280\) \(1.4453\) \(\Gamma_0(N)\)-optimal
8664.f4 8664i4 \([0, -1, 0, 204928, 31189932]\) \(9878111854/10097379\) \(-972882106052401152\) \([2]\) \(69120\) \(2.1384\)  

Rank

sage: E.rank()
 

The elliptic curves in class 8664.f have rank \(1\).

Complex multiplication

The elliptic curves in class 8664.f do not have complex multiplication.

Modular form 8664.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} + q^{9} - 2 q^{13} - 2 q^{15} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.