Properties

Label 8664.c
Number of curves $2$
Conductor $8664$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Elliptic curves in class 8664.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8664.c1 8664a2 \([0, -1, 0, -424, 3484]\) \(1203052/9\) \(63212544\) \([2]\) \(3200\) \(0.32709\)  
8664.c2 8664a1 \([0, -1, 0, -44, -12]\) \(5488/3\) \(5267712\) \([2]\) \(1600\) \(-0.019479\) \(\Gamma_0(N)\)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 8664.c have rank \(1\).

Complex multiplication

The elliptic curves in class 8664.c do not have complex multiplication.

Modular form 8664.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} - 4 q^{7} + q^{9} + 2 q^{11} + 2 q^{15} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.