Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
8640.a1 |
8640g1 |
8640.a |
8640g |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$30$ |
$2$ |
$0$ |
$4.064904984$ |
$1$ |
|
$2$ |
$16128$ |
$1.101551$ |
$-1568892672/78125$ |
$1.03660$ |
$4.20063$ |
$[0, 0, 0, -6588, 214488]$ |
\(y^2=x^3-6588x+214488\) |
30.2.0.a.1 |
$[(61, 199)]$ |
8640.b1 |
8640u2 |
8640.b |
8640u |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{5} \cdot 5^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3456$ |
$0.224062$ |
$-5267712/125$ |
$1.15142$ |
$3.08267$ |
$[0, 0, 0, -228, 1352]$ |
\(y^2=x^3-228x+1352\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 30.8.0.b.1, 120.16.0.? |
$[]$ |
8640.b2 |
8640u1 |
8640.b |
8640u |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1152$ |
$-0.325244$ |
$6912/5$ |
$0.69897$ |
$2.10371$ |
$[0, 0, 0, 12, 8]$ |
\(y^2=x^3+12x+8\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 30.8.0.b.1, 120.16.0.? |
$[]$ |
8640.c1 |
8640t1 |
8640.c |
8640t |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{6} \cdot 3^{11} \cdot 5^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2880$ |
$0.311152$ |
$-12288/25$ |
$0.90890$ |
$2.99725$ |
$[0, 0, 0, -108, -918]$ |
\(y^2=x^3-108x-918\) |
6.2.0.a.1 |
$[]$ |
8640.d1 |
8640by1 |
8640.d |
8640by |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{6} \cdot 3^{5} \cdot 5^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1.364988818$ |
$1$ |
|
$2$ |
$7680$ |
$0.874306$ |
$-1897537562112/390625$ |
$1.05153$ |
$4.18394$ |
$[0, 0, 0, -6438, 198862]$ |
\(y^2=x^3-6438x+198862\) |
6.2.0.a.1 |
$[(-39, 625)]$ |
8640.e1 |
8640bf1 |
8640.e |
8640bf |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{23} \cdot 3^{3} \cdot 5^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$0.994349$ |
$-16522921323/4000$ |
$1.05582$ |
$4.33586$ |
$[0, 0, 0, -10188, -395888]$ |
\(y^2=x^3-10188x-395888\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 60.8.0-3.a.1.3, 120.16.0.? |
$[]$ |
8640.e2 |
8640bf2 |
8640.e |
8640bf |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{33} \cdot 3^{9} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$34560$ |
$1.543653$ |
$1601613/163840$ |
$1.15089$ |
$4.61376$ |
$[0, 0, 0, 4212, -1394928]$ |
\(y^2=x^3+4212x-1394928\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 60.8.0-3.a.1.4, 120.16.0.? |
$[]$ |
8640.f1 |
8640bx1 |
8640.f |
8640bx |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{19} \cdot 3^{3} \cdot 5 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$0.500398471$ |
$1$ |
|
$4$ |
$2304$ |
$0.211040$ |
$-19683/10$ |
$1.02991$ |
$2.90045$ |
$[0, 0, 0, -108, 592]$ |
\(y^2=x^3-108x+592\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 60.8.0-3.a.1.4, 120.16.0.? |
$[(-6, 32)]$ |
8640.f2 |
8640bx2 |
8640.f |
8640bx |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{21} \cdot 3^{5} \cdot 5^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1.501195415$ |
$1$ |
|
$2$ |
$6912$ |
$0.760346$ |
$1073733/1000$ |
$0.96044$ |
$3.51454$ |
$[0, 0, 0, 852, -7472]$ |
\(y^2=x^3+852x-7472\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 60.8.0-3.a.1.3, 120.16.0.? |
$[(42, 320)]$ |
8640.g1 |
8640bw2 |
8640.g |
8640bw |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$0.650029364$ |
$1$ |
|
$2$ |
$3456$ |
$0.484396$ |
$-9199872/5$ |
$0.95440$ |
$3.62467$ |
$[0, 0, 0, -1188, 15768]$ |
\(y^2=x^3-1188x+15768\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 30.8.0.b.1, 120.16.0.? |
$[(21, 9)]$ |
8640.g2 |
8640bw1 |
8640.g |
8640bw |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1.950088094$ |
$1$ |
|
$2$ |
$1152$ |
$-0.064910$ |
$6912/125$ |
$1.02720$ |
$2.47986$ |
$[0, 0, 0, 12, 88]$ |
\(y^2=x^3+12x+88\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 30.8.0.b.1, 120.16.0.? |
$[(-3, 5)]$ |
8640.h1 |
8640s1 |
8640.h |
8640s |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{5} \cdot 5^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$30$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3840$ |
$0.389281$ |
$1022208/3125$ |
$0.94712$ |
$3.05782$ |
$[0, 0, 0, 132, 1208]$ |
\(y^2=x^3+132x+1208\) |
30.2.0.a.1 |
$[]$ |
8640.i1 |
8640bd1 |
8640.i |
8640bd |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{17} \cdot 3^{9} \cdot 5^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$1.174274$ |
$-3721734/3125$ |
$1.00020$ |
$4.15893$ |
$[0, 0, 0, -4428, 177552]$ |
\(y^2=x^3-4428x+177552\) |
120.2.0.? |
$[]$ |
8640.j1 |
8640be1 |
8640.j |
8640be |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{15} \cdot 3^{11} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5760$ |
$0.686897$ |
$-24/5$ |
$0.92802$ |
$3.48062$ |
$[0, 0, 0, -108, 8208]$ |
\(y^2=x^3-108x+8208\) |
120.2.0.? |
$[]$ |
8640.k1 |
8640bg1 |
8640.k |
8640bg |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$30$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2304$ |
$0.235359$ |
$-6912/5$ |
$0.64602$ |
$2.92040$ |
$[0, 0, 0, -108, 648]$ |
\(y^2=x^3-108x+648\) |
30.2.0.a.1 |
$[]$ |
8640.l1 |
8640d1 |
8640.l |
8640d |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{14} \cdot 3^{3} \cdot 5^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$24$ |
$16$ |
$0$ |
$3.123275576$ |
$1$ |
|
$2$ |
$2304$ |
$0.206536$ |
$-5971968/25$ |
$1.09044$ |
$3.15635$ |
$[0, 0, 0, -288, -1888]$ |
\(y^2=x^3-288x-1888\) |
3.4.0.a.1, 6.8.0.b.1, 24.16.0-6.b.1.1 |
$[(41, 235)]$ |
8640.l2 |
8640d2 |
8640.l |
8640d |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{14} \cdot 3^{5} \cdot 5^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$24$ |
$16$ |
$0$ |
$1.041091858$ |
$1$ |
|
$2$ |
$6912$ |
$0.755842$ |
$8429568/15625$ |
$1.06918$ |
$3.52313$ |
$[0, 0, 0, 672, -9952]$ |
\(y^2=x^3+672x-9952\) |
3.4.0.a.1, 6.8.0.b.1, 24.16.0-6.b.1.3 |
$[(49, 375)]$ |
8640.m1 |
8640c1 |
8640.m |
8640c |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{6} \cdot 3^{3} \cdot 5^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.772389679$ |
$1$ |
|
$2$ |
$768$ |
$-0.151520$ |
$-373248/625$ |
$0.99499$ |
$2.38787$ |
$[0, 0, 0, -18, 58]$ |
\(y^2=x^3-18x+58\) |
6.2.0.a.1 |
$[(9, 25)]$ |
8640.n1 |
8640b1 |
8640.n |
8640b |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{14} \cdot 3^{9} \cdot 5^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$2.410009564$ |
$1$ |
|
$2$ |
$4608$ |
$0.588222$ |
$27648/25$ |
$0.94639$ |
$3.28976$ |
$[0, 0, 0, 432, 2592]$ |
\(y^2=x^3+432x+2592\) |
6.2.0.a.1 |
$[(1, 55)]$ |
8640.o1 |
8640a1 |
8640.o |
8640a |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{11} \cdot 5 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$30$ |
$2$ |
$0$ |
$6.045191468$ |
$1$ |
|
$0$ |
$2304$ |
$0.402259$ |
$-768/5$ |
$0.72784$ |
$3.10735$ |
$[0, 0, 0, -108, -1512]$ |
\(y^2=x^3-108x-1512\) |
30.2.0.a.1 |
$[(349/3, 6193/3)]$ |
8640.p1 |
8640bs1 |
8640.p |
8640bs |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{11} \cdot 5 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$30$ |
$2$ |
$0$ |
$3.076419896$ |
$1$ |
|
$2$ |
$2304$ |
$0.402259$ |
$-768/5$ |
$0.72784$ |
$3.10735$ |
$[0, 0, 0, -108, 1512]$ |
\(y^2=x^3-108x+1512\) |
30.2.0.a.1 |
$[(-11, 37)]$ |
8640.q1 |
8640bt1 |
8640.q |
8640bt |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{14} \cdot 3^{9} \cdot 5^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.961870254$ |
$1$ |
|
$2$ |
$4608$ |
$0.588222$ |
$27648/25$ |
$0.94639$ |
$3.28976$ |
$[0, 0, 0, 432, -2592]$ |
\(y^2=x^3+432x-2592\) |
6.2.0.a.1 |
$[(9, 45)]$ |
8640.r1 |
8640o1 |
8640.r |
8640o |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{6} \cdot 3^{3} \cdot 5^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$768$ |
$-0.151520$ |
$-373248/625$ |
$0.99499$ |
$2.38787$ |
$[0, 0, 0, -18, -58]$ |
\(y^2=x^3-18x-58\) |
6.2.0.a.1 |
$[]$ |
8640.s1 |
8640bu1 |
8640.s |
8640bu |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{14} \cdot 3^{3} \cdot 5^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$24$ |
$16$ |
$0$ |
$0.988940957$ |
$1$ |
|
$2$ |
$2304$ |
$0.206536$ |
$-5971968/25$ |
$1.09044$ |
$3.15635$ |
$[0, 0, 0, -288, 1888]$ |
\(y^2=x^3-288x+1888\) |
3.4.0.a.1, 6.8.0.b.1, 24.16.0-6.b.1.4 |
$[(9, 5)]$ |
8640.s2 |
8640bu2 |
8640.s |
8640bu |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{14} \cdot 3^{5} \cdot 5^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$24$ |
$16$ |
$0$ |
$2.966822871$ |
$1$ |
|
$2$ |
$6912$ |
$0.755842$ |
$8429568/15625$ |
$1.06918$ |
$3.52313$ |
$[0, 0, 0, 672, 9952]$ |
\(y^2=x^3+672x+9952\) |
3.4.0.a.1, 6.8.0.b.1, 24.16.0-6.b.1.2 |
$[(201, 2875)]$ |
8640.t1 |
8640r1 |
8640.t |
8640r |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$30$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2304$ |
$0.235359$ |
$-6912/5$ |
$0.64602$ |
$2.92040$ |
$[0, 0, 0, -108, -648]$ |
\(y^2=x^3-108x-648\) |
30.2.0.a.1 |
$[]$ |
8640.u1 |
8640bv1 |
8640.u |
8640bv |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{15} \cdot 3^{11} \cdot 5 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$2.041013593$ |
$1$ |
|
$4$ |
$5760$ |
$0.686897$ |
$-24/5$ |
$0.92802$ |
$3.48062$ |
$[0, 0, 0, -108, -8208]$ |
\(y^2=x^3-108x-8208\) |
120.2.0.? |
$[(22, 8)]$ |
8640.v1 |
8640p1 |
8640.v |
8640p |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{17} \cdot 3^{9} \cdot 5^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$1.174274$ |
$-3721734/3125$ |
$1.00020$ |
$4.15893$ |
$[0, 0, 0, -4428, -177552]$ |
\(y^2=x^3-4428x-177552\) |
120.2.0.? |
$[]$ |
8640.w1 |
8640e2 |
8640.w |
8640e |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$10.37938192$ |
$1$ |
|
$0$ |
$3456$ |
$0.484396$ |
$-9199872/5$ |
$0.95440$ |
$3.62467$ |
$[0, 0, 0, -1188, -15768]$ |
\(y^2=x^3-1188x-15768\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 30.8.0.b.1, 120.16.0.? |
$[(21661/23, 792379/23)]$ |
8640.w2 |
8640e1 |
8640.w |
8640e |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$3.459793974$ |
$1$ |
|
$2$ |
$1152$ |
$-0.064910$ |
$6912/125$ |
$1.02720$ |
$2.47986$ |
$[0, 0, 0, 12, -88]$ |
\(y^2=x^3+12x-88\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 30.8.0.b.1, 120.16.0.? |
$[(29, 157)]$ |
8640.x1 |
8640bc1 |
8640.x |
8640bc |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{5} \cdot 5^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$30$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3840$ |
$0.389281$ |
$1022208/3125$ |
$0.94712$ |
$3.05782$ |
$[0, 0, 0, 132, -1208]$ |
\(y^2=x^3+132x-1208\) |
30.2.0.a.1 |
$[]$ |
8640.y1 |
8640q1 |
8640.y |
8640q |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{23} \cdot 3^{3} \cdot 5^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$0.994349$ |
$-16522921323/4000$ |
$1.05582$ |
$4.33586$ |
$[0, 0, 0, -10188, 395888]$ |
\(y^2=x^3-10188x+395888\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 30.8.0-3.a.1.2, 120.16.0.? |
$[]$ |
8640.y2 |
8640q2 |
8640.y |
8640q |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{33} \cdot 3^{9} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$34560$ |
$1.543653$ |
$1601613/163840$ |
$1.15089$ |
$4.61376$ |
$[0, 0, 0, 4212, 1394928]$ |
\(y^2=x^3+4212x+1394928\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 30.8.0-3.a.1.1, 120.16.0.? |
$[]$ |
8640.z1 |
8640f1 |
8640.z |
8640f |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{19} \cdot 3^{3} \cdot 5 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1.540453450$ |
$1$ |
|
$2$ |
$2304$ |
$0.211040$ |
$-19683/10$ |
$1.02991$ |
$2.90045$ |
$[0, 0, 0, -108, -592]$ |
\(y^2=x^3-108x-592\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 30.8.0-3.a.1.1, 120.16.0.? |
$[(38, 224)]$ |
8640.z2 |
8640f2 |
8640.z |
8640f |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{21} \cdot 3^{5} \cdot 5^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$0.513484483$ |
$1$ |
|
$4$ |
$6912$ |
$0.760346$ |
$1073733/1000$ |
$0.96044$ |
$3.51454$ |
$[0, 0, 0, 852, 7472]$ |
\(y^2=x^3+852x+7472\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 30.8.0-3.a.1.2, 120.16.0.? |
$[(22, 192)]$ |
8640.ba1 |
8640bi1 |
8640.ba |
8640bi |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{6} \cdot 3^{5} \cdot 5^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7680$ |
$0.874306$ |
$-1897537562112/390625$ |
$1.05153$ |
$4.18394$ |
$[0, 0, 0, -6438, -198862]$ |
\(y^2=x^3-6438x-198862\) |
6.2.0.a.1 |
$[]$ |
8640.bb1 |
8640bh1 |
8640.bb |
8640bh |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{6} \cdot 3^{11} \cdot 5^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2880$ |
$0.311152$ |
$-12288/25$ |
$0.90890$ |
$2.99725$ |
$[0, 0, 0, -108, 918]$ |
\(y^2=x^3-108x+918\) |
6.2.0.a.1 |
$[]$ |
8640.bc1 |
8640bj2 |
8640.bc |
8640bj |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{5} \cdot 5^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3456$ |
$0.224062$ |
$-5267712/125$ |
$1.15142$ |
$3.08267$ |
$[0, 0, 0, -228, -1352]$ |
\(y^2=x^3-228x-1352\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 30.8.0.b.1, 120.16.0.? |
$[]$ |
8640.bc2 |
8640bj1 |
8640.bc |
8640bj |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1152$ |
$-0.325244$ |
$6912/5$ |
$0.69897$ |
$2.10371$ |
$[0, 0, 0, 12, -8]$ |
\(y^2=x^3+12x-8\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 30.8.0.b.1, 120.16.0.? |
$[]$ |
8640.bd1 |
8640bz1 |
8640.bd |
8640bz |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$30$ |
$2$ |
$0$ |
$5.538432856$ |
$1$ |
|
$2$ |
$16128$ |
$1.101551$ |
$-1568892672/78125$ |
$1.03660$ |
$4.20063$ |
$[0, 0, 0, -6588, -214488]$ |
\(y^2=x^3-6588x-214488\) |
30.2.0.a.1 |
$[(1053, 34065)]$ |
8640.be1 |
8640n2 |
8640.be |
8640n |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{11} \cdot 5^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10368$ |
$0.773368$ |
$-5267712/125$ |
$1.15142$ |
$3.80990$ |
$[0, 0, 0, -2052, -36504]$ |
\(y^2=x^3-2052x-36504\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 30.8.0.b.1, 120.16.0.? |
$[]$ |
8640.be2 |
8640n1 |
8640.be |
8640n |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3456$ |
$0.224062$ |
$6912/5$ |
$0.69897$ |
$2.83093$ |
$[0, 0, 0, 108, -216]$ |
\(y^2=x^3+108x-216\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 30.8.0.b.1, 120.16.0.? |
$[]$ |
8640.bf1 |
8640bb1 |
8640.bf |
8640bb |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$30$ |
$2$ |
$0$ |
$1.206750671$ |
$1$ |
|
$2$ |
$5376$ |
$0.552245$ |
$-1568892672/78125$ |
$1.03660$ |
$3.47340$ |
$[0, 0, 0, -732, -7944]$ |
\(y^2=x^3-732x-7944\) |
30.2.0.a.1 |
$[(37, 125)]$ |
8640.bg1 |
8640cg1 |
8640.bg |
8640cg |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{6} \cdot 3^{11} \cdot 5^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$23040$ |
$1.423613$ |
$-1897537562112/390625$ |
$1.05153$ |
$4.91116$ |
$[0, 0, 0, -57942, -5369274]$ |
\(y^2=x^3-57942x-5369274\) |
6.2.0.a.1 |
$[]$ |
8640.bh1 |
8640ba1 |
8640.bh |
8640ba |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{6} \cdot 3^{5} \cdot 5^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.817197079$ |
$1$ |
|
$2$ |
$960$ |
$-0.238154$ |
$-12288/25$ |
$0.90890$ |
$2.27003$ |
$[0, 0, 0, -12, 34]$ |
\(y^2=x^3-12x+34\) |
6.2.0.a.1 |
$[(3, 5)]$ |
8640.bi1 |
8640cf1 |
8640.bi |
8640cf |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$30$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$768$ |
$-0.313947$ |
$-6912/5$ |
$0.64602$ |
$2.19317$ |
$[0, 0, 0, -12, -24]$ |
\(y^2=x^3-12x-24\) |
30.2.0.a.1 |
$[]$ |
8640.bj1 |
8640bo1 |
8640.bj |
8640bo |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{15} \cdot 3^{5} \cdot 5 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$0.400135096$ |
$1$ |
|
$6$ |
$1920$ |
$0.137591$ |
$-24/5$ |
$0.92802$ |
$2.75339$ |
$[0, 0, 0, -12, -304]$ |
\(y^2=x^3-12x-304\) |
120.2.0.? |
$[(10, 24)]$ |
8640.bk1 |
8640bm1 |
8640.bk |
8640bm |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{17} \cdot 3^{3} \cdot 5^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$0.440804565$ |
$1$ |
|
$4$ |
$3840$ |
$0.624968$ |
$-3721734/3125$ |
$1.00020$ |
$3.43170$ |
$[0, 0, 0, -492, -6576]$ |
\(y^2=x^3-492x-6576\) |
120.2.0.? |
$[(58, 400)]$ |
8640.bl1 |
8640bl1 |
8640.bl |
8640bl |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$6.223973048$ |
$1$ |
|
$0$ |
$1152$ |
$-0.064910$ |
$-9199872/5$ |
$0.95440$ |
$2.89745$ |
$[0, 0, 0, -132, -584]$ |
\(y^2=x^3-132x-584\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 30.8.0.b.1, 120.16.0.? |
$[(445/3, 9107/3)]$ |
8640.bl2 |
8640bl2 |
8640.bl |
8640bl |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$2.074657682$ |
$1$ |
|
$2$ |
$3456$ |
$0.484396$ |
$6912/125$ |
$1.02720$ |
$3.20708$ |
$[0, 0, 0, 108, -2376]$ |
\(y^2=x^3+108x-2376\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 30.8.0.b.1, 120.16.0.? |
$[(13, 35)]$ |