# Properties

 Label 86190k Number of curves 2 Conductor 86190 CM no Rank 0 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("86190.k1")

sage: E.isogeny_class()

## Elliptic curves in class 86190k

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
86190.k1 86190k1 [1, 1, 0, -781628, 250778832]  2515968 $$\Gamma_0(N)$$-optimal
86190.k2 86190k2 [1, 1, 0, 624452, 1055337808]  5031936

## Rank

sage: E.rank()

The elliptic curves in class 86190k have rank $$0$$.

## Modular form 86190.2.a.k

sage: E.q_eigenform(10)

$$q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} + 4q^{7} - q^{8} + q^{9} + q^{10} + 4q^{11} - q^{12} - 4q^{14} + q^{15} + q^{16} - q^{17} - q^{18} + 2q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 