# Properties

 Label 86190.u Number of curves 2 Conductor 86190 CM no Rank 1 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("86190.u1")

sage: E.isogeny_class()

## Elliptic curves in class 86190.u

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
86190.u1 86190bc2 [1, 0, 1, -4329784, -3380807818]  5271552
86190.u2 86190bc1 [1, 0, 1, 64216, -174945418]  2635776 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 86190.u have rank $$1$$.

## Modular form 86190.2.a.u

sage: E.q_eigenform(10)

$$q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - 2q^{7} - q^{8} + q^{9} + q^{10} - 4q^{11} + q^{12} + 2q^{14} - q^{15} + q^{16} - q^{17} - q^{18} + 2q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 