# Properties

 Label 86190.g Number of curves 2 Conductor 86190 CM no Rank 1 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("86190.g1")

sage: E.isogeny_class()

## Elliptic curves in class 86190.g

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
86190.g1 86190a1 [1, 1, 0, -2301783, 1327857237]  2580480 $$\Gamma_0(N)$$-optimal
86190.g2 86190a2 [1, 1, 0, -354903, 3504858453]  5160960

## Rank

sage: E.rank()

The elliptic curves in class 86190.g have rank $$1$$.

## Modular form 86190.2.a.g

sage: E.q_eigenform(10)

$$q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} + 2q^{7} - q^{8} + q^{9} + q^{10} - q^{12} - 2q^{14} + q^{15} + q^{16} - q^{17} - q^{18} - 2q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 