Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-40096408x+97700194688\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-40096408xz^2+97700194688z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-3247809075x+71233185354750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(3272, 39312\right)\)
|
$\hat{h}(P)$ | ≈ | $2.4478265459283327399053561844$ |
Torsion generators
\( \left(3623, 0\right) \), \( \left(3688, 0\right) \)
Integral points
\( \left(-7312, 0\right) \), \((3272,\pm 39312)\), \( \left(3623, 0\right) \), \( \left(3688, 0\right) \), \((5648,\pm 226800)\)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 85800 \) | = | $2^{3} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $978069330810000000000 $ | = | $2^{10} \cdot 3^{14} \cdot 5^{10} \cdot 11^{2} \cdot 13^{2} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{445574312599094932036}{61129333175625} \) | = | $2^{2} \cdot 3^{-14} \cdot 5^{-4} \cdot 7^{3} \cdot 11^{-2} \cdot 13^{-2} \cdot 643^{3} \cdot 1069^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $3.0454914998488737650616231679\dots$ | ||
Stable Faltings height: | $1.6631498931652024865802167334\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $2.4478265459283327399053561844\dots$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $0.15088738200836683176820351169\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 448 $ = $ 2\cdot( 2 \cdot 7 )\cdot2^{2}\cdot2\cdot2 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $4$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 10.341691895519864310388472737 $ |
Modular invariants
Modular form 85800.2.a.cy
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 8257536 | ||
$ \Gamma_0(N) $-optimal: | no | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III^{*}$ | Additive | -1 | 3 | 10 | 0 |
$3$ | $14$ | $I_{14}$ | Split multiplicative | -1 | 1 | 14 | 14 |
$5$ | $4$ | $I_{4}^{*}$ | Additive | 1 | 2 | 10 | 4 |
$11$ | $2$ | $I_{2}$ | Non-split multiplicative | 1 | 1 | 2 | 2 |
$13$ | $2$ | $I_{2}$ | Non-split multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 2.6.0.1 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | add | ord | nonsplit | nonsplit | ord | ord | ord | ord | ss | ord | ord | ord | ss |
$\lambda$-invariant(s) | - | 2 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1,3 |
$\mu$-invariant(s) | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 85800.cy
consists of 4 curves linked by isogenies of
degrees dividing 4.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$4$ | \(\Q(\sqrt{-15}, \sqrt{66})\) | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{15}, \sqrt{-39})\) | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{65}, \sqrt{110})\) | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.