# Properties

 Label 85800.cy3 Conductor $85800$ Discriminant $9.781\times 10^{20}$ j-invariant $$\frac{445574312599094932036}{61129333175625}$$ CM no Rank $1$ Torsion structure $$\Z/{2}\Z \oplus \Z/{2}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 1, 0, -40096408, 97700194688])

gp: E = ellinit([0, 1, 0, -40096408, 97700194688])

magma: E := EllipticCurve([0, 1, 0, -40096408, 97700194688]);

## Simplified equation

 $$y^2=x^3+x^2-40096408x+97700194688$$ y^2=x^3+x^2-40096408x+97700194688 (homogenize, simplify) $$y^2z=x^3+x^2z-40096408xz^2+97700194688z^3$$ y^2z=x^3+x^2z-40096408xz^2+97700194688z^3 (dehomogenize, simplify) $$y^2=x^3-3247809075x+71233185354750$$ y^2=x^3-3247809075x+71233185354750 (homogenize, minimize)

## Mordell-Weil group structure

$$\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(3272, 39312\right)$$ (3272, 39312) $\hat{h}(P)$ ≈ $2.4478265459283327399053561844$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(3623, 0\right)$$, $$\left(3688, 0\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-7312, 0\right)$$, $$(3272,\pm 39312)$$, $$\left(3623, 0\right)$$, $$\left(3688, 0\right)$$, $$(5648,\pm 226800)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$85800$$ = $2^{3} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $978069330810000000000$ = $2^{10} \cdot 3^{14} \cdot 5^{10} \cdot 11^{2} \cdot 13^{2}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{445574312599094932036}{61129333175625}$$ = $2^{2} \cdot 3^{-14} \cdot 5^{-4} \cdot 7^{3} \cdot 11^{-2} \cdot 13^{-2} \cdot 643^{3} \cdot 1069^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $3.0454914998488737650616231679\dots$ Stable Faltings height: $1.6631498931652024865802167334\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $2.4478265459283327399053561844\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.15088738200836683176820351169\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $448$  = $2\cdot( 2 \cdot 7 )\cdot2^{2}\cdot2\cdot2$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $4$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $10.341691895519864310388472737$

## Modular invariants

Modular form 85800.2.a.cy

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{3} + 4 q^{7} + q^{9} - q^{11} - q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 8257536 $\Gamma_0(N)$-optimal: no Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $III^{*}$ Additive -1 3 10 0
$3$ $14$ $I_{14}$ Split multiplicative -1 1 14 14
$5$ $4$ $I_{4}^{*}$ Additive 1 2 10 4
$11$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2
$13$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2Cs 2.6.0.1

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add split add ord nonsplit nonsplit ord ord ord ord ss ord ord ord ss - 2 - 1 1 1 1 1 1 1 1,1 1 1 1 1,3 - 0 - 0 0 0 0 0 0 0 0,0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2.
Its isogeny class 85800.cy consists of 4 curves linked by isogenies of degrees dividing 4.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $4$ $$\Q(\sqrt{-15}, \sqrt{66})$$ $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{15}, \sqrt{-39})$$ $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{65}, \sqrt{110})$$ $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $8$ Deg 8 $$\Z/2\Z \oplus \Z/6\Z$$ Not in database $16$ Deg 16 $$\Z/4\Z \oplus \Z/4\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \oplus \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \oplus \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \oplus \Z/8\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.