Properties

Label 8550.z
Number of curves $1$
Conductor $8550$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("z1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 8550.z

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8550.z1 8550v1 \([1, -1, 1, 355, 12197]\) \(272199695/3735552\) \(-68080435200\) \([]\) \(6144\) \(0.75940\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 8550.z1 has rank \(1\).

Complex multiplication

The elliptic curves in class 8550.z do not have complex multiplication.

Modular form 8550.2.a.z

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{8} - q^{11} + 4q^{13} + q^{16} - 4q^{17} - q^{19} + O(q^{20})\)  Toggle raw display