Properties

Label 8550.e
Number of curves $4$
Conductor $8550$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 8550.e have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8550.e do not have complex multiplication.

Modular form 8550.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{7} - q^{8} - 2 q^{13} + 2 q^{14} + q^{16} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 8550.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8550.e1 8550l4 \([1, -1, 0, -1682442, 811529716]\) \(46237740924063961/1806561830400\) \(20577868349400000000\) \([2]\) \(165888\) \(2.4731\)  
8550.e2 8550l2 \([1, -1, 0, -248067, -47154659]\) \(148212258825961/1218375000\) \(13878052734375000\) \([2]\) \(55296\) \(1.9238\)  
8550.e3 8550l1 \([1, -1, 0, -5067, -1713659]\) \(-1263214441/110808000\) \(-1262172375000000\) \([2]\) \(27648\) \(1.5772\) \(\Gamma_0(N)\)-optimal
8550.e4 8550l3 \([1, -1, 0, 45558, 46025716]\) \(918046641959/80912056320\) \(-921638891520000000\) \([2]\) \(82944\) \(2.1266\)