Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 855.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
855.c1 | 855c2 | \([1, -1, 0, -684, 513]\) | \(48587168449/28048275\) | \(20447192475\) | \([2]\) | \(640\) | \(0.66795\) | |
855.c2 | 855c1 | \([1, -1, 0, 171, 0]\) | \(756058031/438615\) | \(-319750335\) | \([2]\) | \(320\) | \(0.32138\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 855.c have rank \(0\).
Complex multiplication
The elliptic curves in class 855.c do not have complex multiplication.Modular form 855.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.