Properties

Label 855.b
Number of curves $2$
Conductor $855$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 855.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
855.b1 855b2 \([1, -1, 1, -842, 9366]\) \(90458382169/2671875\) \(1947796875\) \([2]\) \(384\) \(0.55965\)  
855.b2 855b1 \([1, -1, 1, 13, 474]\) \(357911/135375\) \(-98688375\) \([2]\) \(192\) \(0.21307\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 855.b have rank \(1\).

Complex multiplication

The elliptic curves in class 855.b do not have complex multiplication.

Modular form 855.2.a.b

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + q^{5} - 2 q^{7} + 3 q^{8} - q^{10} + 2 q^{11} - 4 q^{13} + 2 q^{14} - q^{16} - 2 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.