Show commands for:
SageMath
sage: E = EllipticCurve("ce1")
sage: E.isogeny_class()
Elliptic curves in class 85176ce
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
85176.bs4 | 85176ce1 | [0, 0, 0, 1521, -118638] | [2] | 147456 | \(\Gamma_0(N)\)-optimal |
85176.bs3 | 85176ce2 | [0, 0, 0, -28899, -1779570] | [2, 2] | 294912 | |
85176.bs2 | 85176ce3 | [0, 0, 0, -89739, 8186022] | [2] | 589824 | |
85176.bs1 | 85176ce4 | [0, 0, 0, -454779, -118044810] | [2] | 589824 |
Rank
sage: E.rank()
The elliptic curves in class 85176ce have rank \(0\).
Complex multiplication
The elliptic curves in class 85176ce do not have complex multiplication.Modular form 85176.2.a.ce
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.