# Properties

 Label 84966.de1 Conductor $84966$ Discriminant $-5.306\times 10^{16}$ j-invariant $$\frac{2280364702703}{1560674304}$$ CM no Rank $1$ Torsion structure trivial

# Learn more

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 1, 88836, -4318371])

gp: E = ellinit([1, 1, 1, 88836, -4318371])

magma: E := EllipticCurve([1, 1, 1, 88836, -4318371]);

$$y^2+xy+y=x^3+x^2+88836x-4318371$$

## Mordell-Weil group structure

$$\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(237, 5369\right)$$ $$\hat{h}(P)$$ ≈ $0.73440431965459536072143309382$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(77, 1689\right)$$, $$\left(77, -1767\right)$$, $$\left(237, 5369\right)$$, $$\left(237, -5607\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$84966$$ = $$2 \cdot 3 \cdot 7^{2} \cdot 17^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-53063801874284544$$ = $$-1 \cdot 2^{17} \cdot 3^{5} \cdot 7^{8} \cdot 17^{2}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{2280364702703}{1560674304}$$ = $$2^{-17} \cdot 3^{-5} \cdot 7^{-2} \cdot 17 \cdot 5119^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $$1.8978147588374055193806749280\dots$$ Stable Faltings height: $$0.45265746030037952011974278663\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$0.73440431965459536072143309382\dots$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.20089362765114082171886690033\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$68$$  = $$17\cdot1\cdot2^{2}\cdot1$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$1$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

Modular form 84966.2.a.de

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} - q^{3} + q^{4} + 3q^{5} - q^{6} + q^{8} + q^{9} + 3q^{10} - 5q^{11} - q^{12} - 3q^{15} + q^{16} + q^{18} - 6q^{19} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 1175040 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$10.032526059789418335640684017652062701$$

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$17$$ $$I_{17}$$ Split multiplicative -1 1 17 17
$$3$$ $$1$$ $$I_{5}$$ Non-split multiplicative 1 1 5 5
$$7$$ $$4$$ $$I_2^{*}$$ Additive -1 2 8 2
$$17$$ $$1$$ $$II$$ Additive 1 2 2 0

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge 5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 split nonsplit ordinary add ordinary ss add ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary 5 1 1 - 1 1,1 - 1 1 1 1 1 1 3 1 0 0 0 - 0 0,0 - 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has no rational isogenies. Its isogeny class 84966.de consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.6936.1 $$\Z/2\Z$$ Not in database $6$ 6.0.1154594304.2 $$\Z/2\Z \times \Z/2\Z$$ Not in database $8$ Deg 8 $$\Z/3\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.