# Properties

 Label 8470c1 Conductor $8470$ Discriminant $-3.631\times 10^{13}$ j-invariant $$-\frac{584043889}{1400}$$ CM no Rank $0$ Torsion structure trivial

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 1, -51549, -4518384])

gp: E = ellinit([1, 0, 1, -51549, -4518384])

magma: E := EllipticCurve([1, 0, 1, -51549, -4518384]);

$$y^2+xy+y=x^3-51549x-4518384$$

trivial

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

None

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$8470$$ = $2 \cdot 5 \cdot 7 \cdot 11^{2}$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-36312394441400$ = $-1 \cdot 2^{3} \cdot 5^{2} \cdot 7 \cdot 11^{10}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{584043889}{1400}$$ = $-1 \cdot 2^{-3} \cdot 5^{-2} \cdot 7^{-1} \cdot 11^{2} \cdot 13^{6}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $1.4812959337971495240072050016\dots$ Stable Faltings height: $-0.51695012686815926271108131337\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.15839925669560744530991918600\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $2$  = $1\cdot2\cdot1\cdot1$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $0.31679851339121489061983837200549094241$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{7} - q^{8} - 2 q^{9} + q^{10} + q^{12} - 5 q^{13} + q^{14} - q^{15} + q^{16} - 6 q^{17} + 2 q^{18} - 5 q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 38016 $\Gamma_0(N)$-optimal: yes Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $1$ $I_{3}$ Non-split multiplicative 1 1 3 3
$5$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2
$7$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1
$11$ $1$ $II^{*}$ Additive -1 2 10 0

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$3$ 3B 3.4.0.1

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 nonsplit ordinary nonsplit nonsplit add ordinary ordinary ordinary ordinary ss ordinary ordinary ss ordinary ordinary 5 2 0 0 - 0 0 0 0 0,0 0 0 0,0 0 0 0 0 0 0 - 0 0 0 0 0,0 0 0 0,0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 3.
Its isogeny class 8470c consists of 2 curves linked by isogenies of degree 3.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-11})$$ $$\Z/3\Z$$ Not in database $3$ 3.1.6776.1 $$\Z/2\Z$$ Not in database $6$ 6.0.2571193856.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database $6$ 6.2.6525283235625.1 $$\Z/3\Z$$ Not in database $6$ 6.0.505055936.1 $$\Z/6\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database $12$ Deg 12 $$\Z/3\Z \times \Z/3\Z$$ Not in database $12$ Deg 12 $$\Z/2\Z \times \Z/6\Z$$ Not in database $18$ 18.0.14927159215474770609259550944862400000000.2 $$\Z/9\Z$$ Not in database $18$ 18.2.3568897738233788116463500297946688000000000000.1 $$\Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.