# Properties

 Label 8400cd Number of curves 6 Conductor 8400 CM no Rank 1 Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("8400.bn1")

sage: E.isogeny_class()

## Elliptic curves in class 8400cd

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
8400.bn6 8400cd1 [0, 1, 0, 392, 788] [2] 4096 $$\Gamma_0(N)$$-optimal
8400.bn5 8400cd2 [0, 1, 0, -1608, 4788] [2, 2] 8192
8400.bn3 8400cd3 [0, 1, 0, -15608, -751212] [2] 16384
8400.bn2 8400cd4 [0, 1, 0, -19608, 1048788] [2, 2] 16384
8400.bn1 8400cd5 [0, 1, 0, -313608, 67492788] [2] 32768
8400.bn4 8400cd6 [0, 1, 0, -13608, 1708788] [2] 32768

## Rank

sage: E.rank()

The elliptic curves in class 8400cd have rank $$1$$.

## Modular form8400.2.a.bn

sage: E.q_eigenform(10)

$$q + q^{3} - q^{7} + q^{9} - 4q^{11} + 2q^{13} + 6q^{17} - 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.