Show commands for:
SageMath
sage: E = EllipticCurve("bk1")
sage: E.isogeny_class()
Elliptic curves in class 8400bk
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
8400.m3 | 8400bk1 | [0, -1, 0, -1408, 13312] | [2] | 9216 | \(\Gamma_0(N)\)-optimal |
8400.m2 | 8400bk2 | [0, -1, 0, -9408, -338688] | [2, 2] | 18432 | |
8400.m1 | 8400bk3 | [0, -1, 0, -149408, -22178688] | [2] | 36864 | |
8400.m4 | 8400bk4 | [0, -1, 0, 2592, -1154688] | [2] | 36864 |
Rank
sage: E.rank()
The elliptic curves in class 8400bk have rank \(0\).
Complex multiplication
The elliptic curves in class 8400bk do not have complex multiplication.Modular form 8400.2.a.bk
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.