| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 8379.a1 |
8379e1 |
8379.a |
8379e |
$1$ |
$1$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{6} \cdot 7^{8} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.544181114$ |
$1$ |
|
$6$ |
$13104$ |
$0.792796$ |
$-28672/19$ |
$0.67892$ |
$3.67364$ |
$[0, 0, 1, -1029, -18608]$ |
\(y^2+y=x^3-1029x-18608\) |
38.2.0.a.1 |
$[(49, 220)]$ |
$1$ |
| 8379.b1 |
8379d1 |
8379.b |
8379d |
$1$ |
$1$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{20} \cdot 7^{4} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$92736$ |
$1.902113$ |
$28383712415744/32806384371$ |
$1.04419$ |
$5.02045$ |
$[0, 0, 1, 76587, -8146728]$ |
\(y^2+y=x^3+76587x-8146728\) |
38.2.0.a.1 |
$[ ]$ |
$1$ |
| 8379.c1 |
8379q1 |
8379.c |
8379q |
$1$ |
$1$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{20} \cdot 7^{10} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$649152$ |
$2.875069$ |
$28383712415744/32806384371$ |
$1.04419$ |
$6.31291$ |
$[0, 0, 1, 3752763, 2794327618]$ |
\(y^2+y=x^3+3752763x+2794327618\) |
38.2.0.a.1 |
$[ ]$ |
$1$ |
| 8379.d1 |
8379i1 |
8379.d |
8379i |
$1$ |
$1$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{6} \cdot 7^{2} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.493971539$ |
$1$ |
|
$4$ |
$1872$ |
$-0.180159$ |
$-28672/19$ |
$0.67892$ |
$2.38118$ |
$[0, 0, 1, -21, 54]$ |
\(y^2+y=x^3-21x+54\) |
38.2.0.a.1 |
$[(2, 4)]$ |
$1$ |
| 8379.e1 |
8379n3 |
8379.e |
8379n |
$4$ |
$4$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( 3^{10} \cdot 7^{6} \cdot 19 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3192$ |
$48$ |
$0$ |
$1.841944016$ |
$1$ |
|
$16$ |
$18432$ |
$1.277252$ |
$115714886617/1539$ |
$0.98111$ |
$4.84216$ |
$[1, -1, 1, -44771, 3657336]$ |
\(y^2+xy+y=x^3-x^2-44771x+3657336\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 56.12.0-4.c.1.5, 76.12.0.?, $\ldots$ |
$[(86, 618), (122, -57)]$ |
$1$ |
| 8379.e2 |
8379n2 |
8379.e |
8379n |
$4$ |
$4$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( 3^{8} \cdot 7^{6} \cdot 19^{2} \) |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$1596$ |
$48$ |
$0$ |
$1.841944016$ |
$1$ |
|
$26$ |
$9216$ |
$0.930679$ |
$30664297/3249$ |
$0.90727$ |
$3.93046$ |
$[1, -1, 1, -2876, 54366]$ |
\(y^2+xy+y=x^3-x^2-2876x+54366\) |
2.6.0.a.1, 12.12.0.b.1, 28.12.0-2.a.1.1, 76.12.0.?, 84.24.0.?, $\ldots$ |
$[(2, 219), (51, 170)]$ |
$1$ |
| 8379.e3 |
8379n1 |
8379.e |
8379n |
$4$ |
$4$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( 3^{7} \cdot 7^{6} \cdot 19 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3192$ |
$48$ |
$0$ |
$1.841944016$ |
$1$ |
|
$17$ |
$4608$ |
$0.584105$ |
$389017/57$ |
$0.96267$ |
$3.44701$ |
$[1, -1, 1, -671, -5610]$ |
\(y^2+xy+y=x^3-x^2-671x-5610\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 28.12.0-4.c.1.2, 114.6.0.?, $\ldots$ |
$[(-12, 30), (30, 9)]$ |
$1$ |
| 8379.e4 |
8379n4 |
8379.e |
8379n |
$4$ |
$4$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{7} \cdot 7^{6} \cdot 19^{4} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3192$ |
$48$ |
$0$ |
$0.460486004$ |
$1$ |
|
$24$ |
$18432$ |
$1.277252$ |
$67419143/390963$ |
$0.97474$ |
$4.26116$ |
$[1, -1, 1, 3739, 263400]$ |
\(y^2+xy+y=x^3-x^2+3739x+263400\) |
2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 28.12.0-4.c.1.1, $\ldots$ |
$[(-12, 471), (-31, 357)]$ |
$1$ |
| 8379.f1 |
8379b1 |
8379.f |
8379b |
$2$ |
$2$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( 3^{9} \cdot 7^{8} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$228$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$18432$ |
$1.276878$ |
$766060875/931$ |
$0.86309$ |
$4.65155$ |
$[1, -1, 1, -25220, -1533626]$ |
\(y^2+xy+y=x^3-x^2-25220x-1533626\) |
2.3.0.a.1, 12.6.0.c.1, 76.6.0.?, 114.6.0.?, 228.12.0.? |
$[ ]$ |
$1$ |
| 8379.f2 |
8379b2 |
8379.f |
8379b |
$2$ |
$2$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{9} \cdot 7^{10} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$228$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$36864$ |
$1.623451$ |
$-307546875/866761$ |
$1.04147$ |
$4.74645$ |
$[1, -1, 1, -18605, -2361824]$ |
\(y^2+xy+y=x^3-x^2-18605x-2361824\) |
2.3.0.a.1, 6.6.0.a.1, 76.6.0.?, 228.12.0.? |
$[ ]$ |
$1$ |
| 8379.g1 |
8379m2 |
8379.g |
8379m |
$2$ |
$2$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( 3^{16} \cdot 7^{9} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1596$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$92160$ |
$2.236542$ |
$789529529265625/7311624327$ |
$1.01939$ |
$5.81942$ |
$[1, -1, 1, -849155, 298974260]$ |
\(y^2+xy+y=x^3-x^2-849155x+298974260\) |
2.3.0.a.1, 28.6.0.a.1, 228.6.0.?, 1596.12.0.? |
$[ ]$ |
$1$ |
| 8379.g2 |
8379m1 |
8379.g |
8379m |
$2$ |
$2$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( 3^{11} \cdot 7^{12} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1596$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$46080$ |
$1.889967$ |
$1031831907625/543185433$ |
$0.96952$ |
$5.08436$ |
$[1, -1, 1, -92840, -3249214]$ |
\(y^2+xy+y=x^3-x^2-92840x-3249214\) |
2.3.0.a.1, 28.6.0.b.1, 114.6.0.?, 1596.12.0.? |
$[ ]$ |
$1$ |
| 8379.h1 |
8379c1 |
8379.h |
8379c |
$1$ |
$1$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{10} \cdot 7^{8} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13440$ |
$1.155926$ |
$-1835008/1539$ |
$0.91010$ |
$4.14871$ |
$[0, 0, 1, -4116, 159066]$ |
\(y^2+y=x^3-4116x+159066\) |
38.2.0.a.1 |
$[ ]$ |
$1$ |
| 8379.i1 |
8379j1 |
8379.i |
8379j |
$1$ |
$1$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{10} \cdot 7^{2} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1920$ |
$0.182970$ |
$-1835008/1539$ |
$0.91010$ |
$2.85624$ |
$[0, 0, 1, -84, -464]$ |
\(y^2+y=x^3-84x-464\) |
38.2.0.a.1 |
$[ ]$ |
$1$ |
| 8379.j1 |
8379f3 |
8379.j |
8379f |
$3$ |
$9$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{6} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$7182$ |
$1296$ |
$43$ |
$21.57657708$ |
$1$ |
|
$0$ |
$27216$ |
$1.555700$ |
$-50357871050752/19$ |
$1.10495$ |
$5.51474$ |
$[0, 0, 1, -339276, -76063766]$ |
\(y^2+y=x^3-339276x-76063766\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.1, 27.36.0.a.1, 38.2.0.a.1, $\ldots$ |
$[(6984302686/415, 583632546429559/415)]$ |
$1$ |
| 8379.j2 |
8379f2 |
8379.j |
8379f |
$3$ |
$9$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{6} \cdot 7^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$7182$ |
$1296$ |
$43$ |
$7.192192360$ |
$1$ |
|
$0$ |
$9072$ |
$1.006393$ |
$-89915392/6859$ |
$1.03310$ |
$4.06325$ |
$[0, 0, 1, -4116, -108131]$ |
\(y^2+y=x^3-4116x-108131\) |
3.12.0.a.1, 9.36.0.b.1, 21.24.0-3.a.1.1, 38.2.0.a.1, 63.72.0-9.b.1.1, $\ldots$ |
$[(3049/5, 137093/5)]$ |
$1$ |
| 8379.j3 |
8379f1 |
8379.j |
8379f |
$3$ |
$9$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{6} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$7182$ |
$1296$ |
$43$ |
$2.397397453$ |
$1$ |
|
$2$ |
$3024$ |
$0.457088$ |
$32768/19$ |
$1.31757$ |
$3.17312$ |
$[0, 0, 1, 294, -86]$ |
\(y^2+y=x^3+294x-86\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.2, 27.36.0.a.1, 38.2.0.a.1, $\ldots$ |
$[(22, 130)]$ |
$1$ |
| 8379.k1 |
8379k2 |
8379.k |
8379k |
$2$ |
$2$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( 3^{8} \cdot 7^{9} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1596$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$28672$ |
$1.379976$ |
$7880599/3249$ |
$0.86684$ |
$4.42629$ |
$[1, -1, 0, -12798, 302049]$ |
\(y^2+xy=x^3-x^2-12798x+302049\) |
2.3.0.a.1, 28.6.0.a.1, 228.6.0.?, 1596.12.0.? |
$[ ]$ |
$1$ |
| 8379.k2 |
8379k1 |
8379.k |
8379k |
$2$ |
$2$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{7} \cdot 7^{9} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1596$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$14336$ |
$1.033403$ |
$68921/57$ |
$0.78914$ |
$3.90166$ |
$[1, -1, 0, 2637, 33480]$ |
\(y^2+xy=x^3-x^2+2637x+33480\) |
2.3.0.a.1, 28.6.0.b.1, 228.6.0.?, 798.6.0.?, 1596.12.0.? |
$[ ]$ |
$1$ |
| 8379.l1 |
8379g2 |
8379.l |
8379g |
$2$ |
$2$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( 3^{12} \cdot 7^{7} \cdot 19^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1596$ |
$12$ |
$0$ |
$1.149787286$ |
$1$ |
|
$4$ |
$18432$ |
$1.448627$ |
$12246522625/1842183$ |
$0.89725$ |
$4.59354$ |
$[1, -1, 0, -21177, 1025730]$ |
\(y^2+xy=x^3-x^2-21177x+1025730\) |
2.3.0.a.1, 28.6.0.a.1, 228.6.0.?, 1596.12.0.? |
$[(142, 860)]$ |
$1$ |
| 8379.l2 |
8379g1 |
8379.l |
8379g |
$2$ |
$2$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( 3^{9} \cdot 7^{8} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1596$ |
$12$ |
$0$ |
$2.299574572$ |
$1$ |
|
$3$ |
$9216$ |
$1.102055$ |
$244140625/25137$ |
$1.08196$ |
$4.16012$ |
$[1, -1, 0, -5742, -150417]$ |
\(y^2+xy=x^3-x^2-5742x-150417\) |
2.3.0.a.1, 28.6.0.b.1, 114.6.0.?, 1596.12.0.? |
$[(142, 1301)]$ |
$1$ |
| 8379.m1 |
8379a1 |
8379.m |
8379a |
$2$ |
$2$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( 3^{3} \cdot 7^{8} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$228$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$6144$ |
$0.727572$ |
$766060875/931$ |
$0.86309$ |
$3.92186$ |
$[1, -1, 0, -2802, 57735]$ |
\(y^2+xy=x^3-x^2-2802x+57735\) |
2.3.0.a.1, 12.6.0.c.1, 76.6.0.?, 114.6.0.?, 228.12.0.? |
$[ ]$ |
$1$ |
| 8379.m2 |
8379a2 |
8379.m |
8379a |
$2$ |
$2$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{3} \cdot 7^{10} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$228$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12288$ |
$1.074146$ |
$-307546875/866761$ |
$1.04147$ |
$4.01676$ |
$[1, -1, 0, -2067, 88164]$ |
\(y^2+xy=x^3-x^2-2067x+88164\) |
2.3.0.a.1, 6.6.0.a.1, 76.6.0.?, 228.12.0.? |
$[ ]$ |
$1$ |
| 8379.n1 |
8379h2 |
8379.n |
8379h |
$2$ |
$2$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( 3^{8} \cdot 7^{3} \cdot 19^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1596$ |
$12$ |
$0$ |
$1.195268093$ |
$1$ |
|
$4$ |
$4096$ |
$0.407021$ |
$7880599/3249$ |
$0.86684$ |
$3.13382$ |
$[1, -1, 0, -261, -806]$ |
\(y^2+xy=x^3-x^2-261x-806\) |
2.3.0.a.1, 28.6.0.a.1, 228.6.0.?, 1596.12.0.? |
$[(-10, 32)]$ |
$1$ |
| 8379.n2 |
8379h1 |
8379.n |
8379h |
$2$ |
$2$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{7} \cdot 7^{3} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1596$ |
$12$ |
$0$ |
$2.390536186$ |
$1$ |
|
$3$ |
$2048$ |
$0.060447$ |
$68921/57$ |
$0.78914$ |
$2.60919$ |
$[1, -1, 0, 54, -113]$ |
\(y^2+xy=x^3-x^2+54x-113\) |
2.3.0.a.1, 28.6.0.b.1, 228.6.0.?, 798.6.0.?, 1596.12.0.? |
$[(6, 17)]$ |
$1$ |
| 8379.o1 |
8379l2 |
8379.o |
8379l |
$2$ |
$2$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( 3^{8} \cdot 7^{7} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1596$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$129024$ |
$2.048302$ |
$11192824869409/2963890503$ |
$0.95644$ |
$5.34826$ |
$[1, -1, 0, -205515, 26462218]$ |
\(y^2+xy=x^3-x^2-205515x+26462218\) |
2.3.0.a.1, 28.6.0.a.1, 228.6.0.?, 1596.12.0.? |
$[ ]$ |
$1$ |
| 8379.o2 |
8379l1 |
8379.o |
8379l |
$2$ |
$2$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( 3^{7} \cdot 7^{8} \cdot 19^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1596$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$64512$ |
$1.701729$ |
$8855610342769/1008273$ |
$0.94565$ |
$5.32233$ |
$[1, -1, 0, -190080, 31941643]$ |
\(y^2+xy=x^3-x^2-190080x+31941643\) |
2.3.0.a.1, 28.6.0.b.1, 114.6.0.?, 1596.12.0.? |
$[ ]$ |
$1$ |
| 8379.p1 |
8379p1 |
8379.p |
8379p |
$1$ |
$1$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{8} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7488$ |
$0.685713$ |
$-1404928/171$ |
$0.86512$ |
$3.61029$ |
$[0, 0, 1, -1029, 13977]$ |
\(y^2+y=x^3-1029x+13977\) |
38.2.0.a.1 |
$[ ]$ |
$1$ |
| 8379.q1 |
8379o2 |
8379.q |
8379o |
$2$ |
$5$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{8} \cdot 7^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$3990$ |
$48$ |
$1$ |
$1$ |
$9$ |
$3$ |
$0$ |
$158400$ |
$2.173668$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$6.09313$ |
$[0, 0, 1, -1936137, -1036938821]$ |
\(y^2+y=x^3-1936137x-1036938821\) |
5.12.0.a.2, 38.2.0.a.1, 105.24.0.?, 190.24.1.?, 3990.48.1.? |
$[ ]$ |
$1$ |
| 8379.q2 |
8379o1 |
8379.q |
8379o |
$2$ |
$5$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{16} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$3990$ |
$48$ |
$1$ |
$1$ |
$9$ |
$3$ |
$0$ |
$31680$ |
$1.368950$ |
$841232384/1121931$ |
$1.00490$ |
$4.32650$ |
$[0, 0, 1, 8673, -355091]$ |
\(y^2+y=x^3+8673x-355091\) |
5.12.0.a.1, 38.2.0.a.1, 105.24.0.?, 190.24.1.?, 3990.48.1.? |
$[ ]$ |
$1$ |