Properties

Label 832.g
Number of curves $1$
Conductor $832$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("g1")
 
E.isogeny_class()
 

Elliptic curves in class 832.g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
832.g1 832a1 \([0, 1, 0, -1, 31]\) \(-8/13\) \(-425984\) \([]\) \(64\) \(-0.24084\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 832.g1 has rank \(1\).

Complex multiplication

The elliptic curves in class 832.g do not have complex multiplication.

Modular form 832.2.a.g

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{5} - 3 q^{7} - 2 q^{9} + 2 q^{11} - q^{13} - q^{15} - 3 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display