Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
832.a1 |
832j2 |
832.a |
832j |
$2$ |
$7$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{19} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$728$ |
$96$ |
$2$ |
$0.089317794$ |
$1$ |
|
$8$ |
$2688$ |
$1.329515$ |
$-1064019559329/125497034$ |
$1.06269$ |
$6.00182$ |
$[0, 0, 0, -13612, 670672]$ |
\(y^2=x^3-13612x+670672\) |
7.24.0.a.2, 56.48.0-7.a.2.2, 104.2.0.?, 182.48.0.?, 728.96.2.? |
$[(42, 416)]$ |
832.a2 |
832j1 |
832.a |
832j |
$2$ |
$7$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{25} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.1 |
7B.6.1 |
$728$ |
$96$ |
$2$ |
$0.625224564$ |
$1$ |
|
$4$ |
$384$ |
$0.356560$ |
$-2146689/1664$ |
$0.96784$ |
$4.15031$ |
$[0, 0, 0, -172, -1328]$ |
\(y^2=x^3-172x-1328\) |
7.24.0.a.1, 56.48.0-7.a.1.2, 104.2.0.?, 182.48.0.?, 728.96.2.? |
$[(42, 256)]$ |
832.b1 |
832b1 |
832.b |
832b |
$1$ |
$1$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{15} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$0.371453946$ |
$1$ |
|
$6$ |
$64$ |
$-0.240840$ |
$-8/13$ |
$0.95359$ |
$3.03655$ |
$[0, -1, 0, -1, -31]$ |
\(y^2=x^3-x^2-x-31\) |
104.2.0.? |
$[(5, 8)]$ |
832.c1 |
832e1 |
832.c |
832e |
$1$ |
$1$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{17} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$128$ |
$-0.046458$ |
$-235298/13$ |
$0.96559$ |
$3.60558$ |
$[0, -1, 0, -65, -191]$ |
\(y^2=x^3-x^2-65x-191\) |
104.2.0.? |
$[]$ |
832.d1 |
832c3 |
832.d |
832c |
$3$ |
$9$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{27} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$936$ |
$144$ |
$3$ |
$2.977948821$ |
$1$ |
|
$2$ |
$1152$ |
$1.094107$ |
$-10730978619193/6656$ |
$1.02193$ |
$6.31795$ |
$[0, -1, 0, -29409, -1931423]$ |
\(y^2=x^3-x^2-29409x-1931423\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.1, 72.24.0.?, 104.2.0.?, $\ldots$ |
$[(649, 15872)]$ |
832.d2 |
832c2 |
832.d |
832c |
$3$ |
$9$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{21} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$936$ |
$144$ |
$3$ |
$0.992649607$ |
$1$ |
|
$4$ |
$384$ |
$0.544801$ |
$-10218313/17576$ |
$0.94717$ |
$4.46110$ |
$[0, -1, 0, -289, -3679]$ |
\(y^2=x^3-x^2-289x-3679\) |
3.12.0.a.1, 24.24.0-3.a.1.1, 104.2.0.?, 117.36.0.?, 156.24.0.?, $\ldots$ |
$[(25, 64)]$ |
832.d3 |
832c1 |
832.d |
832c |
$3$ |
$9$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{19} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$936$ |
$144$ |
$3$ |
$0.330883202$ |
$1$ |
|
$4$ |
$128$ |
$-0.004505$ |
$12167/26$ |
$0.84415$ |
$3.40188$ |
$[0, -1, 0, 31, 97]$ |
\(y^2=x^3-x^2+31x+97\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.2, 72.24.0.?, 104.2.0.?, $\ldots$ |
$[(9, 32)]$ |
832.e1 |
832d1 |
832.e |
832d |
$2$ |
$2$ |
\( 2^{6} \cdot 13 \) |
\( 2^{10} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.21 |
2B |
$104$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$48$ |
$-0.431299$ |
$442368/13$ |
$1.27279$ |
$2.96429$ |
$[0, 0, 0, -16, -24]$ |
\(y^2=x^3-16x-24\) |
2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.3, 26.6.0.b.1, 52.24.0.e.1, $\ldots$ |
$[]$ |
832.e2 |
832d2 |
832.e |
832d |
$2$ |
$2$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{14} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.12 |
2B |
$104$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$96$ |
$-0.084726$ |
$432/169$ |
$1.09219$ |
$3.31466$ |
$[0, 0, 0, 4, -80]$ |
\(y^2=x^3+4x-80\) |
2.3.0.a.1, 4.12.0-4.a.1.1, 52.24.0-52.d.1.1, 104.48.0.? |
$[]$ |
832.f1 |
832h1 |
832.f |
832h |
$2$ |
$2$ |
\( 2^{6} \cdot 13 \) |
\( 2^{10} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.21 |
2B |
$104$ |
$48$ |
$0$ |
$1.094512601$ |
$1$ |
|
$5$ |
$48$ |
$-0.431299$ |
$442368/13$ |
$1.27279$ |
$2.96429$ |
$[0, 0, 0, -16, 24]$ |
\(y^2=x^3-16x+24\) |
2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.3, 26.6.0.b.1, 52.24.0.e.1, $\ldots$ |
$[(1, 3)]$ |
832.f2 |
832h2 |
832.f |
832h |
$2$ |
$2$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{14} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.12 |
2B |
$104$ |
$48$ |
$0$ |
$0.547256300$ |
$1$ |
|
$7$ |
$96$ |
$-0.084726$ |
$432/169$ |
$1.09219$ |
$3.31466$ |
$[0, 0, 0, 4, 80]$ |
\(y^2=x^3+4x+80\) |
2.3.0.a.1, 4.12.0-4.a.1.1, 52.24.0-52.d.1.1, 104.48.0.? |
$[(-2, 8)]$ |
832.g1 |
832a1 |
832.g |
832a |
$1$ |
$1$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{15} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$0.250115901$ |
$1$ |
|
$4$ |
$64$ |
$-0.240840$ |
$-8/13$ |
$0.95359$ |
$3.03655$ |
$[0, 1, 0, -1, 31]$ |
\(y^2=x^3+x^2-x+31\) |
104.2.0.? |
$[(3, 8)]$ |
832.h1 |
832i1 |
832.h |
832i |
$1$ |
$1$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{17} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$0.236753544$ |
$1$ |
|
$4$ |
$128$ |
$-0.046458$ |
$-235298/13$ |
$0.96559$ |
$3.60558$ |
$[0, 1, 0, -65, 191]$ |
\(y^2=x^3+x^2-65x+191\) |
104.2.0.? |
$[(-1, 16)]$ |
832.i1 |
832g3 |
832.i |
832g |
$3$ |
$9$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{27} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$936$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1152$ |
$1.094107$ |
$-10730978619193/6656$ |
$1.02193$ |
$6.31795$ |
$[0, 1, 0, -29409, 1931423]$ |
\(y^2=x^3+x^2-29409x+1931423\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.3, 72.24.0.?, 78.8.0.?, $\ldots$ |
$[]$ |
832.i2 |
832g2 |
832.i |
832g |
$3$ |
$9$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{21} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$936$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$384$ |
$0.544801$ |
$-10218313/17576$ |
$0.94717$ |
$4.46110$ |
$[0, 1, 0, -289, 3679]$ |
\(y^2=x^3+x^2-289x+3679\) |
3.12.0.a.1, 24.24.0-3.a.1.2, 78.24.0.?, 104.2.0.?, 117.36.0.?, $\ldots$ |
$[]$ |
832.i3 |
832g1 |
832.i |
832g |
$3$ |
$9$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{19} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$936$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$128$ |
$-0.004505$ |
$12167/26$ |
$0.84415$ |
$3.40188$ |
$[0, 1, 0, 31, -97]$ |
\(y^2=x^3+x^2+31x-97\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.4, 72.24.0.?, 78.8.0.?, $\ldots$ |
$[]$ |
832.j1 |
832f2 |
832.j |
832f |
$2$ |
$7$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{19} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$728$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$2688$ |
$1.329515$ |
$-1064019559329/125497034$ |
$1.06269$ |
$6.00182$ |
$[0, 0, 0, -13612, -670672]$ |
\(y^2=x^3-13612x-670672\) |
7.24.0.a.2, 56.48.0-7.a.2.1, 104.2.0.?, 364.48.0.?, 728.96.2.? |
$[]$ |
832.j2 |
832f1 |
832.j |
832f |
$2$ |
$7$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{25} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.1 |
7B.6.1 |
$728$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$384$ |
$0.356560$ |
$-2146689/1664$ |
$0.96784$ |
$4.15031$ |
$[0, 0, 0, -172, 1328]$ |
\(y^2=x^3-172x+1328\) |
7.24.0.a.1, 56.48.0-7.a.1.1, 104.2.0.?, 364.48.0.?, 728.96.2.? |
$[]$ |